These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 23662857
1. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL. Environ Sci Technol; 2013 Jun 04; 47(11):5635-42. PubMed ID: 23662857 [Abstract] [Full Text] [Related]
2. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL. Environ Sci Technol; 2013 Dec 17; 47(24):14110-8. PubMed ID: 24266714 [Abstract] [Full Text] [Related]
4. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R. Ecotoxicol Environ Saf; 2009 May 17; 72(4):1102-10. PubMed ID: 19013643 [Abstract] [Full Text] [Related]
6. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Saha P, Chatterjee P, Biswas AK. Indian J Exp Biol; 2010 Jun 17; 48(6):593-600. PubMed ID: 20882762 [Abstract] [Full Text] [Related]
10. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Shaw AK, Hossain Z. Chemosphere; 2013 Oct 17; 93(6):906-15. PubMed ID: 23791109 [Abstract] [Full Text] [Related]
11. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, Zhang J, Rui Y, Zhang Z. Environ Pollut; 2017 Jan 17; 220(Pt B):1400-1408. PubMed ID: 27843018 [Abstract] [Full Text] [Related]
12. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B. Int J Phytoremediation; 2013 Jan 17; 15(6):513-21. PubMed ID: 23819293 [Abstract] [Full Text] [Related]
14. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL. Environ Sci Pollut Res Int; 2015 Jul 17; 22(14):10551-8. PubMed ID: 25735245 [Abstract] [Full Text] [Related]
16. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. Ramírez-Olvera SM, Trejo-Téllez LI, García-Morales S, Pérez-Sato JA, Gómez-Merino FC. PLoS One; 2018 Jul 17; 13(3):e0194691. PubMed ID: 29579100 [Abstract] [Full Text] [Related]
17. Antioxidant system activation by mercury in Pfaffia glomerata plantlets. Calgaroto NS, Castro GY, Cargnelutti D, Pereira LB, Gonçalves JF, Rossato LV, Antes FG, Dressler VL, Flores EM, Schetinger MR, Nicoloso FT. Biometals; 2010 Apr 17; 23(2):295-305. PubMed ID: 20063044 [Abstract] [Full Text] [Related]
18. Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO2 Nanoparticles in Cucumber Plants. Liu M, Feng S, Ma Y, Xie C, He X, Ding Y, Zhang J, Luo W, Zheng L, Chen D, Yang F, Chai Z, Zhao Y, Zhang Z. ACS Appl Mater Interfaces; 2019 May 08; 11(18):16905-16913. PubMed ID: 30993970 [Abstract] [Full Text] [Related]
19. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Linares CE, Dressler VL, de Moraes Flores EM, Nicoloso FT, Morsch VM, Schetinger MR. Chemosphere; 2006 Nov 08; 65(6):999-1006. PubMed ID: 16674986 [Abstract] [Full Text] [Related]