These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 23665693

  • 41. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK, Lee KT, Mohamed AR.
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [Abstract] [Full Text] [Related]

  • 42. Sequential co-production of biodiesel and bioethanol with spent coffee grounds.
    Kwon EE, Yi H, Jeon YJ.
    Bioresour Technol; 2013 May; 136():475-80. PubMed ID: 23567719
    [Abstract] [Full Text] [Related]

  • 43. Optimization and Kinetic Studies on Biodiesel Production from Kusum (Schleichera triguga) Oil Using Response Surface Methodology.
    Sarve A, Varma MN, Sonawane SS.
    J Oleo Sci; 2015 May; 64(9):987-97. PubMed ID: 26329771
    [Abstract] [Full Text] [Related]

  • 44. Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes.
    Madhu D, Arora R, Sahani S, Singh V, Sharma YC.
    J Agric Food Chem; 2017 Mar 15; 65(10):2100-2109. PubMed ID: 28230995
    [Abstract] [Full Text] [Related]

  • 45. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.
    Xie W, Yang D.
    Bioresour Technol; 2011 Oct 15; 102(20):9818-22. PubMed ID: 21871795
    [Abstract] [Full Text] [Related]

  • 46. Biodiesel production using heterogeneous catalysts.
    Semwal S, Arora AK, Badoni RP, Tuli DK.
    Bioresour Technol; 2011 Feb 15; 102(3):2151-61. PubMed ID: 21106371
    [Abstract] [Full Text] [Related]

  • 47. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.
    Hindryawati N, Maniam GP.
    Ultrason Sonochem; 2015 Jan 15; 22():454-62. PubMed ID: 24842471
    [Abstract] [Full Text] [Related]

  • 48. Production of biodiesel from waste frying oils.
    Felizardo P, Correia MJ, Raposo I, Mendes JF, Berkemeier R, Bordado JM.
    Waste Manag; 2006 Jan 15; 26(5):487-94. PubMed ID: 15964752
    [Abstract] [Full Text] [Related]

  • 49. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.
    Sankaranarayanan S, Antonyraj CA, Kannan S.
    Bioresour Technol; 2012 Apr 15; 109():57-62. PubMed ID: 22305480
    [Abstract] [Full Text] [Related]

  • 50. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel.
    Meher LC, Dharmagadda VS, Naik SN.
    Bioresour Technol; 2006 Aug 15; 97(12):1392-7. PubMed ID: 16359862
    [Abstract] [Full Text] [Related]

  • 51. Optimization of sunflower oil transesterification process using sodium methoxide.
    KoohiKamali S, Tan CP, Ling TC.
    ScientificWorldJournal; 2012 Aug 15; 2012():475027. PubMed ID: 22593688
    [Abstract] [Full Text] [Related]

  • 52. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates.
    Ngo TP, Li A, Tiew KW, Li Z.
    Bioresour Technol; 2013 Oct 15; 145():233-9. PubMed ID: 23298767
    [Abstract] [Full Text] [Related]

  • 53. Low-grade oils and fats: effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts.
    Morales G, Bautista LF, Melero JA, Iglesias J, Sánchez-Vázquez R.
    Bioresour Technol; 2011 Oct 15; 102(20):9571-8. PubMed ID: 21862322
    [Abstract] [Full Text] [Related]

  • 54. Integrated biodiesel production: a comparison of different homogeneous catalysts systems.
    Vicente G, Martínez M, Aracil J.
    Bioresour Technol; 2004 May 15; 92(3):297-305. PubMed ID: 14766164
    [Abstract] [Full Text] [Related]

  • 55. Lipase-immobilized biocatalytic membranes for biodiesel production.
    Kuo CH, Peng LT, Kan SC, Liu YC, Shieh CJ.
    Bioresour Technol; 2013 Oct 15; 145():229-32. PubMed ID: 23357586
    [Abstract] [Full Text] [Related]

  • 56. Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification.
    Kakkad H, Khot M, Zinjarde S, RaviKumar A, Ravi Kumar V, Kulkarni BD.
    Bioresour Technol; 2015 Dec 15; 197():502-7. PubMed ID: 26362462
    [Abstract] [Full Text] [Related]

  • 57. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.
    Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, Pratap AP.
    Ultrason Sonochem; 2015 Jan 15; 22():278-86. PubMed ID: 24935026
    [Abstract] [Full Text] [Related]

  • 58. Biodiesel production from rice bran by a two-step in-situ process.
    Shiu PJ, Gunawan S, Hsieh WH, Kasim NS, Ju YH.
    Bioresour Technol; 2010 Feb 15; 101(3):984-9. PubMed ID: 19793647
    [Abstract] [Full Text] [Related]

  • 59. A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance.
    Eze VC, Phan AN, Harvey AP.
    Bioresour Technol; 2014 Mar 15; 156():222-31. PubMed ID: 24508659
    [Abstract] [Full Text] [Related]

  • 60. Upstream and downstream strategies to economize biodiesel production.
    Hasheminejad M, Tabatabaei M, Mansourpanah Y, Khatami far M, Javani A.
    Bioresour Technol; 2011 Jan 15; 102(2):461-8. PubMed ID: 20974530
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.