These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 23668032

  • 1. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system].
    Liu Q, Li Y, Xu Q, Zhao J, Wang L, Gao Y.
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan; 37(1):1-5. PubMed ID: 23668032
    [Abstract] [Full Text] [Related]

  • 2. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J, Bloch P, Xu J, Sarunic MV, Shannon L.
    Appl Opt; 2011 May 01; 50(13):1832-8. PubMed ID: 21532660
    [Abstract] [Full Text] [Related]

  • 3. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.
    Zhang K, Kang JU.
    Opt Express; 2010 May 24; 18(11):11772-84. PubMed ID: 20589038
    [Abstract] [Full Text] [Related]

  • 4. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J, Sugden K, Tomlins PH.
    J Biomed Opt; 2011 Feb 24; 16(2):020505. PubMed ID: 21361661
    [Abstract] [Full Text] [Related]

  • 5. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
    Cui JY, Pratx G, Prevrhal S, Levin CS.
    Med Phys; 2011 Dec 24; 38(12):6775-86. PubMed ID: 22149859
    [Abstract] [Full Text] [Related]

  • 6. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit.
    Watanabe Y.
    J Biomed Opt; 2012 May 24; 17(5):050503. PubMed ID: 22612118
    [Abstract] [Full Text] [Related]

  • 7. Performance evaluation of image processing algorithms on the GPU.
    Castaño-Díez D, Moser D, Schoenegger A, Pruggnaller S, Frangakis AS.
    J Struct Biol; 2008 Oct 24; 164(1):153-60. PubMed ID: 18692140
    [Abstract] [Full Text] [Related]

  • 8. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS, Xia J, Muyan-Ozcelik P, Owens JD.
    Med Phys; 2008 Aug 24; 35(8):3546-53. PubMed ID: 18777915
    [Abstract] [Full Text] [Related]

  • 9. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.
    Watanabe Y, Maeno S, Aoshima K, Hasegawa H, Koseki H.
    Appl Opt; 2010 Sep 01; 49(25):4756-62. PubMed ID: 20820218
    [Abstract] [Full Text] [Related]

  • 10. Computing 2D constrained delaunay triangulation using the GPU.
    Qi M, Cao TT, Tan TS.
    IEEE Trans Vis Comput Graph; 2013 May 01; 19(5):736-48. PubMed ID: 23492377
    [Abstract] [Full Text] [Related]

  • 11. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.
    Watanabe Y, Takahashi Y, Numazawa H.
    J Biomed Opt; 2014 Feb 01; 19(2):021105. PubMed ID: 23846119
    [Abstract] [Full Text] [Related]

  • 12. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW, Reynolds JJ, Marks DL, Boppart SA.
    IEEE Trans Biomed Eng; 2004 Jan 01; 51(1):186-90. PubMed ID: 14723509
    [Abstract] [Full Text] [Related]

  • 13. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S, Bradu A, Podoleanu AG.
    J Biomed Opt; 2010 Jan 01; 15(3):030511. PubMed ID: 20614994
    [Abstract] [Full Text] [Related]

  • 14. Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units.
    Sylwestrzak M, Szlag D, Szkulmowski M, Gorczynska I, Bukowska D, Wojtkowski M, Targowski P.
    J Biomed Opt; 2012 Oct 01; 17(10):100502. PubMed ID: 23042477
    [Abstract] [Full Text] [Related]

  • 15. Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography.
    Wang L, Hofer B, Guggenheim JA, Povazay B.
    J Biomed Opt; 2012 Jul 01; 17(7):077007. PubMed ID: 22894520
    [Abstract] [Full Text] [Related]

  • 16. Acceleration method of 3D medical images registration based on compute unified device architecture.
    Meng L.
    Biomed Mater Eng; 2014 Jul 01; 24(1):1109-16. PubMed ID: 24212003
    [Abstract] [Full Text] [Related]

  • 17. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S, Lima IT, Escobar I MR, Sherif SS.
    Comput Methods Programs Biomed; 2017 Oct 01; 150():97-105. PubMed ID: 28859833
    [Abstract] [Full Text] [Related]

  • 18. Medical image processing on the GPU - past, present and future.
    Eklund A, Dufort P, Forsberg D, LaConte SM.
    Med Image Anal; 2013 Dec 01; 17(8):1073-94. PubMed ID: 23906631
    [Abstract] [Full Text] [Related]

  • 19. Adaptive-optics optical coherence tomography processing using a graphics processing unit.
    Shafer BA, Kriske JE, Kocaoglu OP, Turner TL, Liu Z, Lee JJ, Miller DT.
    Annu Int Conf IEEE Eng Med Biol Soc; 2014 Dec 01; 2014():3877-80. PubMed ID: 25570838
    [Abstract] [Full Text] [Related]

  • 20. GPU accelerated dynamic functional connectivity analysis for functional MRI data.
    Akgün D, Sakoğlu Ü, Esquivel J, Adinoff B, Mete M.
    Comput Med Imaging Graph; 2015 Jul 01; 43():53-63. PubMed ID: 25805449
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.