These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


376 related items for PubMed ID: 23668961

  • 1. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F, Brar SK, Verma M, Tyagi RD.
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [Abstract] [Full Text] [Related]

  • 2. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A.
    Brugnari T, Pereira MG, Bubna GA, de Freitas EN, Contato AG, Corrêa RCG, Castoldi R, de Souza CGM, Polizeli MLTM, Bracht A, Peralta RM.
    Sci Total Environ; 2018 Sep 01; 634():1346-1351. PubMed ID: 29710634
    [Abstract] [Full Text] [Related]

  • 3. Hydroxylation of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
    Wang J, Yamamoto R, Yamamoto Y, Tokumoto T, Dong J, Thomas P, Hirai H, Kawagishi H.
    Chemosphere; 2013 Oct 01; 93(7):1419-23. PubMed ID: 23942019
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y.
    Taghizadeh T, Talebian-Kiakalaieh A, Jahandar H, Amin M, Tarighi S, Faramarzi MA.
    J Hazard Mater; 2020 Mar 15; 386():121950. PubMed ID: 31881496
    [Abstract] [Full Text] [Related]

  • 6. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking.
    Hongyan L, Zexiong Z, Shiwei X, He X, Yinian Z, Haiyun L, Zhongsheng Y.
    Chemosphere; 2019 Jun 15; 224():743-750. PubMed ID: 30851526
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A.
    Xu R, Chi C, Li F, Zhang B.
    Bioresour Technol; 2013 Dec 15; 149():111-6. PubMed ID: 24096278
    [Abstract] [Full Text] [Related]

  • 9. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions.
    Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S.
    Bioresour Technol; 2019 Jan 15; 271():360-367. PubMed ID: 30293031
    [Abstract] [Full Text] [Related]

  • 10. Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants.
    Songulashvili G, Jimenéz-Tobón GA, Jaspers C, Penninckx MJ.
    Fungal Biol; 2012 Aug 15; 116(8):883-9. PubMed ID: 22862916
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Bacteria-mediated bisphenol A degradation.
    Zhang W, Yin K, Chen L.
    Appl Microbiol Biotechnol; 2013 Jul 15; 97(13):5681-9. PubMed ID: 23681588
    [Abstract] [Full Text] [Related]

  • 13. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution.
    Du M, Liu J, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G.
    J Environ Sci (China); 2025 Jan 15; 147():74-82. PubMed ID: 39003085
    [Abstract] [Full Text] [Related]

  • 14. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes.
    Tsutsumi Y, Haneda T, Nishida T.
    Chemosphere; 2001 Jan 15; 42(3):271-6. PubMed ID: 11100927
    [Abstract] [Full Text] [Related]

  • 15. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation.
    Cajthaml T.
    Environ Microbiol; 2015 Dec 15; 17(12):4822-34. PubMed ID: 24650234
    [Abstract] [Full Text] [Related]

  • 16. Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system.
    Chhaya U, Gupte A.
    J Hazard Mater; 2013 Jun 15; 254-255():149-156. PubMed ID: 23611799
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system.
    Mohan H, Lim JM, Lee SW, Cho M, Park YJ, Seralathan KK, Oh BT.
    Chemosphere; 2020 Jun 15; 249():126083. PubMed ID: 32045753
    [Abstract] [Full Text] [Related]

  • 20. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.
    Hou J, Dong G, Luu B, Sengpiel RG, Ye Y, Wessling M, Chen V.
    Bioresour Technol; 2014 Oct 15; 169():475-483. PubMed ID: 25084046
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.