These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


815 related items for PubMed ID: 23673279

  • 1. The neurokinin-3 receptor (NK3R) antagonist SB222200 prevents the apomorphine-evoked surface but not nuclear NK3R redistribution in dopaminergic neurons of the rat ventral tegmental area.
    Hether S, Misono K, Lessard A.
    Neuroscience; 2013 Sep 05; 247():12-24. PubMed ID: 23673279
    [Abstract] [Full Text] [Related]

  • 2. Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area.
    Misono K, Lessard A.
    Neuroscience; 2012 Feb 17; 203():27-38. PubMed ID: 22200547
    [Abstract] [Full Text] [Related]

  • 3. Predominant surface distribution of neurokinin-3 receptors in non-dopaminergic dendrites in the rat substantia nigra and ventral tegmental area.
    Lessard A, Grady EF, Bunnett NW, Pickel VM.
    Neuroscience; 2007 Feb 23; 144(4):1393-408. PubMed ID: 17197098
    [Abstract] [Full Text] [Related]

  • 4. Subcellular distribution and plasticity of neurokinin-1 receptors in the rat substantia nigra and ventral tegmental area.
    Lessard A, Pickel VM.
    Neuroscience; 2005 Feb 23; 135(4):1309-23. PubMed ID: 16165296
    [Abstract] [Full Text] [Related]

  • 5. The neurokinin-3 (NK3) and the neurokinin-1 (NK1) receptors are differentially targeted to mesocortical and mesolimbic projection neurons and to neuronal nuclei in the rat ventral tegmental area.
    Lessard A, Savard M, Gobeil F, Pierce JP, Pickel VM.
    Synapse; 2009 Jun 23; 63(6):484-501. PubMed ID: 19224600
    [Abstract] [Full Text] [Related]

  • 6. Blockade of tachykinin NK3 receptor reverses hypertension through a dopaminergic mechanism in the ventral tegmental area of spontaneously hypertensive rats.
    De Brito Gariepy H, Couture R.
    Br J Pharmacol; 2010 Dec 23; 161(8):1868-84. PubMed ID: 20804497
    [Abstract] [Full Text] [Related]

  • 7. Tipepidine activates VTA dopamine neuron via inhibiting dopamine D₂ receptor-mediated inward rectifying K⁺ current.
    Hamasaki R, Shirasaki T, Soeda F, Takahama K.
    Neuroscience; 2013 Nov 12; 252():24-34. PubMed ID: 23896570
    [Abstract] [Full Text] [Related]

  • 8. Stress-induced dendritic internalization and nuclear translocation of the neurokinin-3 (NK3) receptor in vasopressinergic profiles of the rat paraventricular nucleus of the hypothalamus.
    Miklos Z, Flynn FW, Lessard A.
    Brain Res; 2014 Nov 24; 1590():31-44. PubMed ID: 25281803
    [Abstract] [Full Text] [Related]

  • 9. Effects of acute and repeated administration of amisulpride, a dopamine D2/D3 receptor antagonist, on the electrical activity of midbrain dopaminergic neurons.
    Di Giovanni G, Di Mascio M, Di Matteo V, Esposito E.
    J Pharmacol Exp Ther; 1998 Oct 24; 287(1):51-7. PubMed ID: 9765321
    [Abstract] [Full Text] [Related]

  • 10. Differential glutamate AMPA-receptor plasticity in subpopulations of VTA neurons in the presence or absence of residual cocaine: implications for the development of addiction.
    Lane DA, Reed B, Kreek MJ, Pickel VM.
    Neuropharmacology; 2011 Dec 24; 61(7):1129-40. PubMed ID: 21215761
    [Abstract] [Full Text] [Related]

  • 11. The effect of the acute and chronic administration of CP 96,345, a selective neurokinin1 receptor antagonist, on midbrain dopamine neurons in the rat: a single unit, extracellular recording study.
    Minabe Y, Emori K, Toor A, Stutzmann GE, Ashby CR.
    Synapse; 1996 Jan 24; 22(1):35-45. PubMed ID: 8822476
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Mu-opioid receptors in the ventral tegmental area are targeted to presynaptically and directly modulate mesocortical projection neurons.
    Svingos AL, Garzón M, Colago EE, Pickel VM.
    Synapse; 2001 Sep 01; 41(3):221-9. PubMed ID: 11418935
    [Abstract] [Full Text] [Related]

  • 16. NMDA alters rotenone toxicity in rat substantia nigra zona compacta and ventral tegmental area dopamine neurons.
    Munhall AC, Wu YN, Belknap JK, Meshul CK, Johnson SW.
    Neurotoxicology; 2012 Jun 01; 33(3):429-35. PubMed ID: 22521663
    [Abstract] [Full Text] [Related]

  • 17. Involvement of 5-HT1B receptors within the ventral tegmental area in ethanol-induced increases in mesolimbic dopaminergic transmission.
    Yan QS, Zheng SZ, Feng MJ, Yan SE.
    Brain Res; 2005 Oct 26; 1060(1-2):126-37. PubMed ID: 16212943
    [Abstract] [Full Text] [Related]

  • 18. The ventral tegmental area as a putative target for tachykinins in cardiovascular regulation.
    Deschamps K, Couture R.
    Br J Pharmacol; 2005 Jul 26; 145(6):712-27. PubMed ID: 15895109
    [Abstract] [Full Text] [Related]

  • 19. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.
    Roguski EE, Sharp BM, Chen H, Matta SG.
    J Neurochem; 2014 Mar 26; 128(5):701-12. PubMed ID: 24147868
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 41.