These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


359 related items for PubMed ID: 23675760

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.
    Fermoso J, Gil MV, Rubiera F, Chen D.
    ChemSusChem; 2014 Nov; 7(11):3063-77. PubMed ID: 25209388
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption.
    Zamboni I, Debal M, Matt M, Girods P, Kiennemann A, Rogaume Y, Courson C.
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22253-22266. PubMed ID: 26996917
    [Abstract] [Full Text] [Related]

  • 6. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B, Dupont V, Rickett G, Blakeman N, Williams PT, Chen H, Ding Y, Ghadiri M.
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [Abstract] [Full Text] [Related]

  • 7. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.
    Mohanty P, Patel M, Pant KK.
    Bioresour Technol; 2012 Nov; 123():558-65. PubMed ID: 22944490
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Synthesis of sintering-resistant sorbents for CO2 capture.
    Liu W, Feng B, Wu Y, Wang G, Barry J, da Costa JC.
    Environ Sci Technol; 2010 Apr 15; 44(8):3093-7. PubMed ID: 20205453
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P, Rickett G, Dupont V, Twigg MV.
    Bioresour Technol; 2010 Dec 15; 101(23):9279-86. PubMed ID: 20655199
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles.
    Manovic V, Wu Y, He I, Anthony EJ.
    Environ Sci Technol; 2012 Nov 20; 46(22):12720-5. PubMed ID: 23088430
    [Abstract] [Full Text] [Related]

  • 16. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP, Hu C, Jiang Z, Lu GQ.
    J Environ Sci (China); 2004 Nov 20; 16(2):316-20. PubMed ID: 15137662
    [Abstract] [Full Text] [Related]

  • 17. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.
    Li X, Wang S, Cai Q, Zhu L, Yin Q, Luo Z.
    Appl Biochem Biotechnol; 2012 Sep 20; 168(1):10-20. PubMed ID: 21562805
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture.
    Wang J, Kang D, Shen B, Sun H, Wu C.
    Environ Pollut; 2020 Dec 20; 267():115487. PubMed ID: 33254613
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.