These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 23680269

  • 1. Mercury leaching characteristics of waste treatment residues generated from various sources in Korea.
    Cho JH, Eom Y, Park JM, Lee SB, Hong JH, Lee TG.
    Waste Manag; 2013 Jul; 33(7):1675-81. PubMed ID: 23680269
    [Abstract] [Full Text] [Related]

  • 2. Behaviour of heavy metals immobilized by co-melting treatment of sewage sludge ash and municipal solid waste incinerator fly ash.
    Lin KL, Huang WJ, Chen KC, Chow JD, Chen HJ.
    Waste Manag Res; 2009 Oct; 27(7):660-7. PubMed ID: 19470538
    [Abstract] [Full Text] [Related]

  • 3. Possibilities of municipal solid waste incinerator fly ash utilisation.
    Hartmann S, Koval L, Škrobánková H, Matýsek D, Winter F, Purgar A.
    Waste Manag Res; 2015 Aug; 33(8):740-7. PubMed ID: 26060198
    [Abstract] [Full Text] [Related]

  • 4. An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.
    Donatello S, Fernández-Jiménez A, Palomo A.
    J Hazard Mater; 2012 Apr 30; 213-214():207-15. PubMed ID: 22341491
    [Abstract] [Full Text] [Related]

  • 5. Leaching characteristics of fly ash from Chinese medical waste incineration.
    Tan Z, Xiao G.
    Waste Manag Res; 2012 Mar 30; 30(3):285-94. PubMed ID: 20601401
    [Abstract] [Full Text] [Related]

  • 6. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.
    Saqib N, Bäckström M.
    Waste Manag; 2014 Dec 30; 34(12):2505-19. PubMed ID: 25263218
    [Abstract] [Full Text] [Related]

  • 7. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
    He J, Duan C, Lei M, Zhu X.
    Environ Technol; 2016 Dec 30; 37(1):28-38. PubMed ID: 26121324
    [Abstract] [Full Text] [Related]

  • 8. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V, Braga R, Bokhari SN, Dinelli E, Meisel T.
    Waste Manag; 2015 Nov 30; 45():206-16. PubMed ID: 25512234
    [Abstract] [Full Text] [Related]

  • 9. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.
    Diaz-Loya EI, Allouche EN, Eklund S, Joshi AR, Kupwade-Patil K.
    Waste Manag; 2012 Aug 30; 32(8):1521-7. PubMed ID: 22542857
    [Abstract] [Full Text] [Related]

  • 10. Levels, profiles, and emission characteristics of chlorobenzenes in ash samples from some industrial thermal facilities in northern Vietnam.
    Nguyen HT, Nguyen TTT, Tung NH, Hoang AQ, Pham LH, Minh TB.
    Environ Sci Pollut Res Int; 2019 Jan 30; 26(1):188-198. PubMed ID: 30387061
    [Abstract] [Full Text] [Related]

  • 11. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S, van Zomeren A, Costa G, Dijkstra JJ, Comans RN, Lombardi F.
    Waste Manag; 2012 Apr 30; 32(4):759-68. PubMed ID: 22226920
    [Abstract] [Full Text] [Related]

  • 12. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.
    Saqib N, Bäckström M.
    J Environ Sci (China); 2015 Oct 01; 36():9-21. PubMed ID: 26456601
    [Abstract] [Full Text] [Related]

  • 13. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.
    Buha J, Mueller N, Nowack B, Ulrich A, Losert S, Wang J.
    Environ Sci Technol; 2014 May 06; 48(9):4765-73. PubMed ID: 24720846
    [Abstract] [Full Text] [Related]

  • 14. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes.
    Chang FY, Wey MY.
    J Hazard Mater; 2006 Dec 01; 138(3):594-603. PubMed ID: 16839684
    [Abstract] [Full Text] [Related]

  • 15. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].
    Duan ZY, Su HT, Wang FY, Zhang L, Wang SX, Yu B.
    Huan Jing Ke Xue; 2016 Feb 15; 37(2):459-65. PubMed ID: 27363131
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials.
    Cyr M, Idir R, Escadeillas G.
    J Hazard Mater; 2012 Dec 15; 243():193-203. PubMed ID: 23122733
    [Abstract] [Full Text] [Related]

  • 18. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.
    Lassesson H, Fedje KK, Steenari BM.
    Waste Manag Res; 2014 Aug 15; 32(8):755-62. PubMed ID: 25106538
    [Abstract] [Full Text] [Related]

  • 19. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML, Marostega F, Taffarel SR, Saikia BK, Waanders FB, DaBoit K, Baruah BP, Silva LF.
    Sci Total Environ; 2014 Jan 15; 468-469():1128-37. PubMed ID: 24121564
    [Abstract] [Full Text] [Related]

  • 20. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.
    Liu W, Hou H, Zhang C, Zhang D.
    Waste Manag Res; 2009 May 15; 27(3):258-66. PubMed ID: 19423575
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.