These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 23686764

  • 1. Application of permeability-limited physiologically-based pharmacokinetic models: part II - prediction of P-glycoprotein mediated drug-drug interactions with digoxin.
    Neuhoff S, Yeo KR, Barter Z, Jamei M, Turner DB, Rostami-Hodjegan A.
    J Pharm Sci; 2013 Sep; 102(9):3161-73. PubMed ID: 23686764
    [Abstract] [Full Text] [Related]

  • 2. Application of permeability-limited physiologically-based pharmacokinetic models: part I-digoxin pharmacokinetics incorporating P-glycoprotein-mediated efflux.
    Neuhoff S, Yeo KR, Barter Z, Jamei M, Turner DB, Rostami-Hodjegan A.
    J Pharm Sci; 2013 Sep; 102(9):3145-60. PubMed ID: 23703021
    [Abstract] [Full Text] [Related]

  • 3. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions.
    Greupink R, Schreurs M, Benne MS, Huisman MT, Russel FG.
    Eur J Pharm Sci; 2013 Aug 16; 49(5):819-28. PubMed ID: 23806476
    [Abstract] [Full Text] [Related]

  • 4. Rifampin's acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug-drug interaction trial design.
    Reitman ML, Chu X, Cai X, Yabut J, Venkatasubramanian R, Zajic S, Stone JA, Ding Y, Witter R, Gibson C, Roupe K, Evers R, Wagner JA, Stoch A.
    Clin Pharmacol Ther; 2011 Feb 16; 89(2):234-42. PubMed ID: 21191377
    [Abstract] [Full Text] [Related]

  • 5. A semi-physiologically-based pharmacokinetic model characterizing mechanism-based auto-inhibition to predict stereoselective pharmacokinetics of verapamil and its metabolite norverapamil in human.
    Wang J, Xia S, Xue W, Wang D, Sai Y, Liu L, Liu X.
    Eur J Pharm Sci; 2013 Nov 20; 50(3-4):290-302. PubMed ID: 23916407
    [Abstract] [Full Text] [Related]

  • 6. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug-Drug Interactions and Co-medication Regimens.
    Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, Haefeli WE, Lehr T.
    AAPS J; 2017 Jan 20; 19(1):298-312. PubMed ID: 27822600
    [Abstract] [Full Text] [Related]

  • 7. PBPK Models for CYP3A4 and P-gp DDI Prediction: A Modeling Network of Rifampicin, Itraconazole, Clarithromycin, Midazolam, Alfentanil, and Digoxin.
    Hanke N, Frechen S, Moj D, Britz H, Eissing T, Wendl T, Lehr T.
    CPT Pharmacometrics Syst Pharmacol; 2018 Oct 20; 7(10):647-659. PubMed ID: 30091221
    [Abstract] [Full Text] [Related]

  • 8. Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P‑glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover.
    Qian CQ, Zhao KJ, Chen Y, Liu L, Liu XD.
    Eur J Pharm Sci; 2019 Jun 15; 134():194-204. PubMed ID: 31047967
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The utility of in vitro data in making accurate predictions of human P-glycoprotein-mediated drug-drug interactions: a case study for AZD5672.
    Elsby R, Gillen M, Butters C, Imisson G, Sharma P, Smith V, Surry DD.
    Drug Metab Dispos; 2011 Feb 15; 39(2):275-82. PubMed ID: 21075975
    [Abstract] [Full Text] [Related]

  • 14. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions.
    Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, Liu L, Liu X.
    J Pharm Sci; 2013 Aug 15; 102(8):2819-36. PubMed ID: 23760985
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition.
    Yamazaki S, Evers R, De Zwart L.
    CPT Pharmacometrics Syst Pharmacol; 2022 Jan 15; 11(1):55-67. PubMed ID: 34668334
    [Abstract] [Full Text] [Related]

  • 17. Physiologically based pharmacokinetic modeling to predict drug-drug interactions involving inhibitory metabolite: a case study of amiodarone.
    Chen Y, Mao J, Hop CE.
    Drug Metab Dispos; 2015 Feb 15; 43(2):182-9. PubMed ID: 25324279
    [Abstract] [Full Text] [Related]

  • 18. Impact of P-glycoprotein on blood-retinal barrier permeability: comparison of blood-aqueous humor and blood-brain barrier using mdr1a knockout rats.
    Fujii S, Setoguchi C, Kawazu K, Hosoya K.
    Invest Ophthalmol Vis Sci; 2014 Jul 01; 55(7):4650-8. PubMed ID: 24985475
    [Abstract] [Full Text] [Related]

  • 19. Quantitative investigation of the impact of P-glycoprotein inhibition on drug transport across blood-brain barrier in rats.
    Sugimoto H, Hirabayashi H, Kimura Y, Furuta A, Amano N, Moriwaki T.
    Drug Metab Dispos; 2011 Jan 01; 39(1):8-14. PubMed ID: 20962062
    [Abstract] [Full Text] [Related]

  • 20. Effects of Fostamatinib on the Pharmacokinetics of Digoxin (a P-Glycoprotein Substrate): Results From in Vitro and Phase I Clinical Studies.
    Martin P, Gillen M, Millson D, Oliver S, Brealey C, Elsby R, Baluom M, Lau D, Mant T.
    Clin Ther; 2015 Dec 01; 37(12):2811-22. PubMed ID: 26514315
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.