These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 23694760
1. Single-use surgical clothing system for reduction of airborne bacteria in the operating room. Tammelin A, Ljungqvist B, Reinmüller B. J Hosp Infect; 2013 Jul; 84(3):245-7. PubMed ID: 23694760 [Abstract] [Full Text] [Related]
2. Inconsistent correlation between aerobic bacterial surface and air counts in operating rooms with ultra clean laminar air flows: proposal of a new bacteriological standard for surface contamination. Friberg B, Friberg S, Burman LG. J Hosp Infect; 1999 Aug; 42(4):287-93. PubMed ID: 10467542 [Abstract] [Full Text] [Related]
3. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study. Friberg B, Friberg S, Burman LG. J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212 [Abstract] [Full Text] [Related]
4. Comparison of number of airborne bacteria in operating rooms with turbulent mixing ventilation and unidirectional airflow when using reusable scrub suits and single-use scrub suits. Tammelin A, Kylmänen P, Samuelsson A. J Hosp Infect; 2023 May; 135():119-124. PubMed ID: 36963617 [Abstract] [Full Text] [Related]
5. Comparison of two single-use scrub suits in terms of effect on air-borne bacteria in the operating room. Tammelin A, Blomfeldt AM. J Hosp Infect; 2017 Mar; 95(3):324-326. PubMed ID: 27955931 [Abstract] [Full Text] [Related]
6. An investigation of occlusive polyester surgical clothing. Whyte W, Hamblen DL, Kelly IG, Hambraeus A, Laurell G. J Hosp Infect; 1990 May; 15(4):363-74. PubMed ID: 1972952 [Abstract] [Full Text] [Related]
7. Dispersal of methicillin-resistant Staphylococcus epidermidis by staff in an operating suite for thoracic and cardiovascular surgery: relation to skin carriage and clothing. Tammelin A, Domicel P, Hambraeus A, Ståhle E. J Hosp Infect; 2000 Feb; 44(2):119-26. PubMed ID: 10662562 [Abstract] [Full Text] [Related]
8. Comparison of three distinct clean air suits to decrease the bacterial load in the operating room: an observational study. Kasina P, Tammelin A, Blomfeldt AM, Ljungqvist B, Reinmüller B, Ottosson C. Patient Saf Surg; 2016 Feb; 10():1. PubMed ID: 26744603 [Abstract] [Full Text] [Related]
9. Bacterial dispersion in relation to operating room clothing. Whyte W, Vesley D, Hodgson R. J Hyg (Lond); 1976 Jun; 76(3):367-78. PubMed ID: 778258 [Abstract] [Full Text] [Related]
10. The effect of surgical theatre head-gear on air bacterial counts. Humphreys H, Russell AJ, Marshall RJ, Ricketts VE, Reeves DS. J Hosp Infect; 1991 Nov; 19(3):175-80. PubMed ID: 1685505 [Abstract] [Full Text] [Related]
11. A garment for use in the operating theatre: the effect upon bacterial shedding. Dankert J, Zijlstra JB, Lubberding H. J Hyg (Lond); 1979 Feb; 82(1):7-14. PubMed ID: 762405 [Abstract] [Full Text] [Related]
12. A randomised prospective comparison of Rotecno versus new Gore occlusive surgical gowns using bacterial air counts in ultraclean air. Gulihar A, Taub NA, Taylor GJ. J Hosp Infect; 2009 Sep; 73(1):54-7. PubMed ID: 19646783 [Abstract] [Full Text] [Related]
13. Mobile zoned/exponential LAF screen: a new concept in ultra-clean air technology for additional operating room ventilation. Friberg B, Lindgren M, Karlsson C, Bergström A, Friberg S. J Hosp Infect; 2002 Apr; 50(4):286-92. PubMed ID: 12014902 [Abstract] [Full Text] [Related]
14. Source strength as a measurement to define the ability of clean air suits to reduce airborne contamination in operating rooms. Lytsy B, Hambraeus A, Ljungqvist B, Ransjö U, Reinmüller B. J Hosp Infect; 2022 Jan; 119():9-15. PubMed ID: 34619268 [Abstract] [Full Text] [Related]
15. Lack of influence of body exhaust gowns on aerobic bacterial surface counts in a mixed-ventilation operating theatre. A study of 62 hip arthroplasties. Pasquarella C, Pitzurra O, Herren T, Poletti L, Savino A. J Hosp Infect; 2003 May; 54(1):2-9. PubMed ID: 12767840 [Abstract] [Full Text] [Related]
16. Bacterial burden in the operating room: impact of airflow systems. Hirsch T, Hubert H, Fischer S, Lahmer A, Lehnhardt M, Steinau HU, Steinstraesser L, Seipp HM. Am J Infect Control; 2012 Sep; 40(7):e228-32. PubMed ID: 22542026 [Abstract] [Full Text] [Related]
17. Reduction of skin bacteria in theatre air with comfortable, non-woven disposable clothing for operating-theatre staff. Mitchell NJ, Evans DS, Kerr A. Br Med J; 1978 Mar 18; 1(6114):696-8. PubMed ID: 630302 [Abstract] [Full Text] [Related]
18. Further bacteriological evaluation of the TOUL mobile system delivering ultra-clean air over surgical patients and instruments. Thore M, Burman LG. J Hosp Infect; 2006 Jun 18; 63(2):185-92. PubMed ID: 16621144 [Abstract] [Full Text] [Related]
19. Routes and sources of Staphylococcus aureus transmitted to the surgical wound during cardiothoracic surgery: possibility of preventing wound contamination by use of special scrub suits. Tammelin A, Hambraeus A, Ståhle E. Infect Control Hosp Epidemiol; 2001 Jun 18; 22(6):338-46. PubMed ID: 11519910 [Abstract] [Full Text] [Related]
20. Factors influencing microbial colonies in the air of operating rooms. Fu Shaw L, Chen IH, Chen CS, Wu HH, Lai LS, Chen YY, Wang F. BMC Infect Dis; 2018 Jan 02; 18(1):4. PubMed ID: 29291707 [Abstract] [Full Text] [Related] Page: [Next] [New Search]