These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 23697428

  • 1. Electronic structure and quantum dynamics of photoinitiated dissociation of O2 on rutile TiO2 nanocluster.
    Dholabhai PP, Yu HG.
    J Chem Phys; 2013 May 21; 138(19):194705. PubMed ID: 23697428
    [Abstract] [Full Text] [Related]

  • 2. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S, Metiu H.
    J Chem Phys; 2008 Aug 21; 129(7):074705. PubMed ID: 19044790
    [Abstract] [Full Text] [Related]

  • 3. Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study.
    Rasmussen MD, Molina LM, Hammer B.
    J Chem Phys; 2004 Jan 08; 120(2):988-97. PubMed ID: 15267936
    [Abstract] [Full Text] [Related]

  • 4. Adsorption and reactions of O2 on anatase TiO2.
    Li YF, Aschauer U, Chen J, Selloni A.
    Acc Chem Res; 2014 Nov 18; 47(11):3361-8. PubMed ID: 24742024
    [Abstract] [Full Text] [Related]

  • 5. O2 activation in a dinuclear Fe(II)/EDTA complex: spin surface crossing as a route to highly reactive Fe(IV)oxo species.
    Belanzoni P, Bernasconi L, Baerends EJ.
    J Phys Chem A; 2009 Oct 29; 113(43):11926-37. PubMed ID: 19848430
    [Abstract] [Full Text] [Related]

  • 6. Prediction of tetraoxygen formation on rutile TiO2(110).
    Pillay D, Wang Y, Hwang GS.
    J Am Chem Soc; 2006 Nov 01; 128(43):14000-1. PubMed ID: 17061862
    [Abstract] [Full Text] [Related]

  • 7. Spin-orbit coupling in O2(upsilon)+O2 collisions: I. Electronic structure calculations on dimer states involving the X 3Sigmag-, a 1Deltag, and b 1Sigmag+ states of O2.
    Dayou F, Hernández MI, Campos-Martínez J, Hernández-Lamoneda R.
    J Chem Phys; 2005 Aug 15; 123(7):074311. PubMed ID: 16229574
    [Abstract] [Full Text] [Related]

  • 8. Excited states of thiophene: ring opening as deactivation mechanism.
    Salzmann S, Kleinschmidt M, Tatchen J, Weinkauf R, Marian CM.
    Phys Chem Chem Phys; 2008 Jan 21; 10(3):380-92. PubMed ID: 18174980
    [Abstract] [Full Text] [Related]

  • 9. First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies.
    Wu X, Selloni A, Nayak SK.
    J Chem Phys; 2004 Mar 01; 120(9):4512-6. PubMed ID: 15268619
    [Abstract] [Full Text] [Related]

  • 10. Dissociative dynamics of spin-triplet and spin-singlet O2 on Ag(100).
    Alducin M, Busnengo HF, Díez Muiño R.
    J Chem Phys; 2008 Dec 14; 129(22):224702. PubMed ID: 19071934
    [Abstract] [Full Text] [Related]

  • 11. The role of interstitial sites in the Ti3d defect state in the band gap of titania.
    Wendt S, Sprunger PT, Lira E, Madsen GK, Li Z, Hansen JØ, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B, Besenbacher F.
    Science; 2008 Jun 27; 320(5884):1755-9. PubMed ID: 18535207
    [Abstract] [Full Text] [Related]

  • 12. Effect of hydrogen on O2 adsorption and dissociation on a TiO2 anatase (001) surface.
    Liu L, Wang Z, Pan C, Xiao W, Cho K.
    Chemphyschem; 2013 Apr 02; 14(5):996-1002. PubMed ID: 23460451
    [Abstract] [Full Text] [Related]

  • 13. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110).
    Molina LM, Rasmussen MD, Hammer B.
    J Chem Phys; 2004 Apr 22; 120(16):7673-80. PubMed ID: 15267678
    [Abstract] [Full Text] [Related]

  • 14. Dissociative excitation energy transfer in the reactions of protonated cysteine and tryptophan with electronically excited singlet molecular oxygen (a1Δ(g)).
    Liu F, Fang Y, Chen Y, Liu J.
    J Phys Chem B; 2011 Aug 18; 115(32):9898-909. PubMed ID: 21761907
    [Abstract] [Full Text] [Related]

  • 15. Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study.
    Perun S, Tatchen J, Marian CM.
    Chemphyschem; 2008 Feb 01; 9(2):282-92. PubMed ID: 18189251
    [Abstract] [Full Text] [Related]

  • 16. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J, Kaxiras E, Friend CM.
    Chemistry; 2011 Apr 11; 17(16):4496-506. PubMed ID: 21433119
    [Abstract] [Full Text] [Related]

  • 17. Theoretical spectroscopy and photodynamics of a ruthenium nitrosyl complex.
    Freitag L, González L.
    Inorg Chem; 2014 Jul 07; 53(13):6415-26. PubMed ID: 24745977
    [Abstract] [Full Text] [Related]

  • 18. Experimental and trajectory study on the reaction of protonated methionine with electronically excited singlet molecular oxygen (a1Δg): reaction dynamics and collision energy effects.
    Fang Y, Liu F, Bennett A, Ara S, Liu J.
    J Phys Chem B; 2011 Mar 24; 115(11):2671-82. PubMed ID: 21355611
    [Abstract] [Full Text] [Related]

  • 19. Chemical Interactions and Spin Structure in (O2)4: Implications for the ε-O2 Phase.
    García-Revilla MA, Francisco E, Martín Pendás A, Recio JM, Bartolomei M, Hernández MI, Campos-Martínez J, Carmona-Novillo E, Hernández-Lamoneda R.
    J Chem Theory Comput; 2013 May 14; 9(5):2179-88. PubMed ID: 26583712
    [Abstract] [Full Text] [Related]

  • 20. O2 and vacancy diffusion on rutile(110): pathways and electronic properties.
    Tilocca A, Selloni A.
    Chemphyschem; 2005 Sep 05; 6(9):1911-6. PubMed ID: 16080219
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.