These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
521 related items for PubMed ID: 23700798
1. alpha-Glucosidase and alpha-amylase inhibitory activities of saponins from traditional Chinese medicines in the treatment of diabetes mellitus. Dou F, Xi M, Wang J, Tian X, Hong L, Tang H, Wen A. Pharmazie; 2013 Apr; 68(4):300-4. PubMed ID: 23700798 [Abstract] [Full Text] [Related]
2. Triterpenoid saponins from Rubus ellipticus var. obcordatus. Li W, Fu H, Bai H, Sasaki T, Kato H, Koike K. J Nat Prod; 2009 Oct; 72(10):1755-60. PubMed ID: 19795885 [Abstract] [Full Text] [Related]
3. Triterpene acids isolated from Lagerstroemia speciosa leaves as alpha-glucosidase inhibitors. Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, Wei Y. Phytother Res; 2009 May; 23(5):614-8. PubMed ID: 19107840 [Abstract] [Full Text] [Related]
4. Inhibitory effect of Azadirachta indica A. juss leaf extract on the activities of alpha-amylase and alpha-glucosidase. Kazeem MI, Dansu TV, Adeola SA. Pak J Biol Sci; 2013 Nov 01; 16(21):1358-62. PubMed ID: 24511747 [Abstract] [Full Text] [Related]
5. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P, Kwon YI, Shetty K. Asia Pac J Clin Nutr; 2005 Nov 01; 14(2):145-52. PubMed ID: 15927931 [Abstract] [Full Text] [Related]
6. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet. Chang YX, Ge AH, Donnapee S, Li J, Bai Y, Liu J, He J, Yang X, Song LJ, Zhang BL, Gao XM. J Ethnopharmacol; 2015 Apr 22; 164():210-22. PubMed ID: 25698248 [Abstract] [Full Text] [Related]
7. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Trinh BTD, Staerk D, Jäger AK. J Ethnopharmacol; 2016 Jun 20; 186():189-195. PubMed ID: 27041401 [Abstract] [Full Text] [Related]
8. Effect of Ficus racemosa stem bark on the activities of carbohydrate hydrolyzing enzymes: an in vitro study. Ahmed F, Urooj A. Pharm Biol; 2010 May 20; 48(5):518-23. PubMed ID: 20645793 [Abstract] [Full Text] [Related]
9. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Quan NV, Xuan TD, Tran HD, Thuy NTD, Trang LT, Huong CT, Andriana Y, Tuyen PT. Molecules; 2019 Feb 09; 24(3):. PubMed ID: 30744084 [Abstract] [Full Text] [Related]
10. New antioxidant and antiglycation active triterpenoid saponins from the root bark of Aralia taibaiensis. Bi L, Tian X, Dou F, Hong L, Tang H, Wang S. Fitoterapia; 2012 Jan 09; 83(1):234-40. PubMed ID: 22088497 [Abstract] [Full Text] [Related]
11. Alpha-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. Olubomehin OO, Abo KA, Ajaiyeoba EO. J Ethnopharmacol; 2013 Apr 19; 146(3):811-4. PubMed ID: 23422334 [Abstract] [Full Text] [Related]
12. Inhibitory activity of α-amylase and α-glucosidase by plant extracts from the Brazilian cerrado. Souza PM, Sales PM, Simeoni LA, Silva EC, Silveira D, Magalhães Pde O. Planta Med; 2012 Mar 19; 78(4):393-9. PubMed ID: 22134849 [Abstract] [Full Text] [Related]
13. New triterpenoid saponins with strong alpha-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Luo JG, Ma L, Kong LY. Bioorg Med Chem; 2008 Mar 15; 16(6):2912-20. PubMed ID: 18194870 [Abstract] [Full Text] [Related]
14. [Study on the inhibition of alpha-glucosidase by soyasaponins]. Quan J, Yin X, Jin M, Shen M. Zhong Yao Cai; 2003 Sep 15; 26(9):654-6. PubMed ID: 14692324 [Abstract] [Full Text] [Related]
15. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S, O'Neill FH, Ashafa AOT. J Ethnopharmacol; 2016 May 13; 183():1-8. PubMed ID: 26902829 [Abstract] [Full Text] [Related]
16. Shaddock peels (Citrus maxima) phenolic extracts inhibit α-amylase, α-glucosidase and angiotensin I-converting enzyme activities: a nutraceutical approach to diabetes management. Oboh G, Ademosun AO. Diabetes Metab Syndr; 2011 May 13; 5(3):148-52. PubMed ID: 22813568 [Abstract] [Full Text] [Related]
17. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Ademiluyi AO, Oboh G. Exp Toxicol Pathol; 2013 Mar 13; 65(3):305-9. PubMed ID: 22005499 [Abstract] [Full Text] [Related]
18. Antidiabetic activity of Terminalia sericea constituents. Nkobole N, Houghton PJ, Hussein A, Lall N. Nat Prod Commun; 2011 Nov 13; 6(11):1585-8. PubMed ID: 22224265 [Abstract] [Full Text] [Related]
19. Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. Sasikumar P, Lekshmy K, Sini S, Prabha B, Kumar NA, Sivan VV, Jithin MM, Jayamurthy P, Shibi IG, Radhakrishnan KV. J Ethnopharmacol; 2019 May 23; 236():196-204. PubMed ID: 30844488 [Abstract] [Full Text] [Related]
20. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Ibrahim MA, Koorbanally NA, Islam MS. Acta Pharm; 2014 Sep 23; 64(3):311-24. PubMed ID: 25296677 [Abstract] [Full Text] [Related] Page: [Next] [New Search]