These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1063 related items for PubMed ID: 23706081

  • 21. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity.
    Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH.
    ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):11859-63. PubMed ID: 25078544
    [Abstract] [Full Text] [Related]

  • 22. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK, Lee YH, Zhang Q, Phang IY, Tan JM, Cui Y, Ling XY.
    ACS Appl Mater Interfaces; 2013 Nov 13; 5(21):11409-18. PubMed ID: 24134617
    [Abstract] [Full Text] [Related]

  • 23. Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram.
    Zhang L, Wang B, Zhu G, Zhou X.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec 10; 133():411-6. PubMed ID: 24973781
    [Abstract] [Full Text] [Related]

  • 24. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array.
    Deng S, Fan HM, Zhang X, Loh KP, Cheng CL, Sow CH, Foo YL.
    Nanotechnology; 2009 Apr 29; 20(17):175705. PubMed ID: 19420600
    [Abstract] [Full Text] [Related]

  • 25. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection.
    Huang CT, Jan FJ, Chang CC.
    Molecules; 2021 Jan 08; 26(2):. PubMed ID: 33429970
    [Abstract] [Full Text] [Related]

  • 26. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A.
    ACS Nano; 2011 Jul 26; 5(7):5433-43. PubMed ID: 21675769
    [Abstract] [Full Text] [Related]

  • 27. Shape control of Ag nanostructures for practical SERS substrates.
    Jeon TY, Park SG, Lee SY, Jeon HC, Yang SM.
    ACS Appl Mater Interfaces; 2013 Jan 23; 5(2):243-8. PubMed ID: 23281631
    [Abstract] [Full Text] [Related]

  • 28. Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube.
    Camargo PH, Cobley CM, Rycenga M, Xia Y.
    Nanotechnology; 2009 Oct 28; 20(43):434020. PubMed ID: 19801754
    [Abstract] [Full Text] [Related]

  • 29. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC, Zhao K, Lee TY.
    Nanoscale; 2014 Aug 07; 6(15):8606-11. PubMed ID: 24978350
    [Abstract] [Full Text] [Related]

  • 30. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K, Choi JY, Lee HB, Shin KS.
    J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550
    [Abstract] [Full Text] [Related]

  • 31. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R, Fang Y.
    J Colloid Interface Sci; 2005 Dec 15; 292(2):469-75. PubMed ID: 16051260
    [Abstract] [Full Text] [Related]

  • 32. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX, Su L, Chan YF, Wu ZL, Zhao YM, Xu HJ, Sun XM.
    Nanotechnology; 2013 Aug 23; 24(33):335501. PubMed ID: 23881155
    [Abstract] [Full Text] [Related]

  • 33. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF, Mu C, Xu DS, Tong LM, Zhu T, Du WM.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct 23; 28(10):2329-32. PubMed ID: 19123400
    [Abstract] [Full Text] [Related]

  • 34. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing.
    Kandjani AE, Mohammadtaheri M, Thakkar A, Bhargava SK, Bansal V.
    J Colloid Interface Sci; 2014 Dec 15; 436():251-7. PubMed ID: 25278363
    [Abstract] [Full Text] [Related]

  • 35. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates.
    Lu TY, Lee YC, Yen YT, Yu CC, Chen HL.
    J Colloid Interface Sci; 2016 Mar 15; 466():80-90. PubMed ID: 26707775
    [Abstract] [Full Text] [Related]

  • 36. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection.
    Tan EZ, Yin PG, You TT, Wang H, Guo L.
    ACS Appl Mater Interfaces; 2012 Jul 25; 4(7):3432-7. PubMed ID: 22708788
    [Abstract] [Full Text] [Related]

  • 37. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates.
    Zhu C, Meng G, Huang Q, Zhang Z, Xu Q, Liu G, Huang Z, Chu Z.
    Chem Commun (Camb); 2011 Mar 07; 47(9):2709-11. PubMed ID: 21180755
    [Abstract] [Full Text] [Related]

  • 38. Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection.
    Huang JA, Zhao YQ, Zhang XJ, He LF, Wong TL, Chui YS, Zhang WJ, Lee ST.
    Nano Lett; 2013 Nov 13; 13(11):5039-45. PubMed ID: 24074380
    [Abstract] [Full Text] [Related]

  • 39. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film.
    Gao M, Lin X, Li Z, Wang X, Qiao Y, Zhao H, Zhang J, Wang L.
    Nanotechnology; 2019 Aug 23; 30(34):345604. PubMed ID: 31067524
    [Abstract] [Full Text] [Related]

  • 40. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity.
    Zhang L, Zhu T, Yang C, Jang HY, Jang HJ, Liu L, Park S.
    Nanomaterials (Basel); 2020 Mar 13; 10(3):. PubMed ID: 32183019
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 54.