These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
96 related items for PubMed ID: 23710565
1. Editorial comment to "Cyclic guanosine monophosphate-enhancing reduces androgenic extracellular regulated protein kinases-phosphorylation/Rho kinase II-activation in benign prostate hyperplasia". Hennenberg M. Int J Urol; 2014 Jan; 21(1):92-3. PubMed ID: 23710565 [No Abstract] [Full Text] [Related]
2. Cyclic guanosine monophosphate-enhancing reduces androgenic extracellular regulated protein kinases-phosphorylation/Rho kinase II-activation in benign prostate hyperplasia. Liu CM, Fan YC, Lo YC, Wu BN, Yeh JL, Chen IJ. Int J Urol; 2014 Jan; 21(1):87-92. PubMed ID: 23692571 [Abstract] [Full Text] [Related]
3. cGMP-enhancing- and alpha1A/alpha1D-adrenoceptor blockade-derived inhibition of Rho-kinase by KMUP-1 provides optimal prostate relaxation and epithelial cell anti-proliferation efficacy. Liu CM, Lo YC, Wu BN, Wu WJ, Chou YH, Huang CH, An LM, Chen IJ. Prostate; 2007 Sep 15; 67(13):1397-410. PubMed ID: 17639498 [Abstract] [Full Text] [Related]
4. Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model. Liu CP, Dai ZK, Huang CH, Yeh JL, Wu BN, Wu JR, Chen IJ. Kaohsiung J Med Sci; 2014 Jun 15; 30(6):267-78. PubMed ID: 24835346 [Abstract] [Full Text] [Related]
5. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ. Br J Pharmacol; 2004 Aug 15; 142(7):1105-14. PubMed ID: 15237094 [Abstract] [Full Text] [Related]
6. KMUP-1 inhibits H441 lung epithelial cell growth, migration and proinflammation via increased NO/CGMP and inhibited RHO kinase/VEGF signaling pathways. Wu BN, Chen HY, Liu CP, Hsu LY, Chen IJ. Int J Immunopathol Pharmacol; 2011 Aug 15; 24(4):925-39. PubMed ID: 22230399 [Abstract] [Full Text] [Related]
7. G-substrate: the cerebellum and beyond. Endo S. Prog Mol Biol Transl Sci; 2012 Aug 15; 106():381-416. PubMed ID: 22340725 [Abstract] [Full Text] [Related]
8. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide. Zheng X, Ying L, Liu J, Dou D, He Q, Leung SW, Man RY, Vanhoutte PM, Gao Y. Cardiovasc Res; 2011 Jun 01; 90(3):565-72. PubMed ID: 21248051 [Abstract] [Full Text] [Related]
9. KMUP-1 activates BKCa channels in basilar artery myocytes via cyclic nucleotide-dependent protein kinases. Wu BN, Tu HF, Welsh DG, Chen IJ. Br J Pharmacol; 2005 Nov 01; 146(6):862-71. PubMed ID: 16151435 [Abstract] [Full Text] [Related]
10. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets. Vilches-Flores A, Tovar AR, Marin-Hernandez A, Rojas-Ochoa A, Fernandez-Mejia C. J Nutr Biochem; 2010 Jul 01; 21(7):606-12. PubMed ID: 19560332 [Abstract] [Full Text] [Related]
11. Renal interstitial guanosine cyclic 3', 5'-monophosphate mediates pressure-natriuresis via protein kinase G. Jin XH, McGrath HE, Gildea JJ, Siragy HM, Felder RA, Carey RM. Hypertension; 2004 May 01; 43(5):1133-9. PubMed ID: 15007031 [Abstract] [Full Text] [Related]
12. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, Takimoto E, Paolocci N, Berkowitz DE, Friebe A, Kass DA. Hypertension; 2015 Feb 01; 65(2):385-92. PubMed ID: 25452469 [Abstract] [Full Text] [Related]
13. Stimulation of soluble guanylate cyclase improves renal recovery after relief of unilateral ureteral obstruction. Wang-Rosenke Y, Mika A, Khadzhynov D, Loof T, Neumayer HH, Peters H. J Urol; 2011 Sep 01; 186(3):1142-9. PubMed ID: 21784461 [Abstract] [Full Text] [Related]
15. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3',5'-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Lee NP, Cheng CY. Endocrinology; 2003 Jul 01; 144(7):3114-29. PubMed ID: 12810568 [Abstract] [Full Text] [Related]
16. Receptor-controlled phosphorylation of alpha 1 soluble guanylyl cyclase enhances nitric oxide-dependent cyclic guanosine 5'-monophosphate production in pituitary cells. Kostic TS, Andric SA, Stojilkovic SS. Mol Endocrinol; 2004 Feb 01; 18(2):458-70. PubMed ID: 14630997 [Abstract] [Full Text] [Related]
17. Elevated guanylate cyclase and cyclic-guanosine monophosphate-dependent protein kinase levels in nasal mucosae of antigen-challenged rats. Sakai H, Hara T, Todoroki K, Igarashi Y, Misawa M, Narita M, Chiba Y. Microvasc Res; 2013 Nov 01; 90():150-3. PubMed ID: 24012634 [Abstract] [Full Text] [Related]
18. Deconstructing endothelial dysfunction: soluble guanylyl cyclase oxidation and the NO resistance syndrome. Gladwin MT. J Clin Invest; 2006 Sep 01; 116(9):2330-2. PubMed ID: 16955136 [Abstract] [Full Text] [Related]
19. Soluble guanylyl cyclase is the only enzyme responsible for cyclic guanosine monophosphate synthesis in human platelets. Gambaryan S, Subramanian H, Rukoyatkina N, Herterich S, Walter U. Thromb Haemost; 2013 May 01; 109(5):973-5. PubMed ID: 23467662 [No Abstract] [Full Text] [Related]
20. Role of the NO/sGC/PKG signaling pathway of hippocampal CA1 in morphine-induced reward memory. Shen F, Li YJ, Shou XJ, Cui CL. Neurobiol Learn Mem; 2012 Sep 01; 98(2):130-8. PubMed ID: 22820534 [Abstract] [Full Text] [Related] Page: [Next] [New Search]