These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 23716123

  • 1. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.
    You J, Chen CC, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G, Yang Y.
    Adv Mater; 2013 Aug 07; 25(29):3973-8. PubMed ID: 23716123
    [Abstract] [Full Text] [Related]

  • 2. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells.
    Wei HY, Huang JH, Ho KC, Chu CW.
    ACS Appl Mater Interfaces; 2010 May 07; 2(5):1281-5. PubMed ID: 20450193
    [Abstract] [Full Text] [Related]

  • 3. Enhanced performance and stability of polymer BHJ photovoltaic devices from dry transfer of PEDOT:PSS.
    Kim JK, Park I, Kim W, Wang DH, Choi DG, Choi YS, Park JH.
    ChemSusChem; 2014 Jul 07; 7(7):1957-63. PubMed ID: 24989323
    [Abstract] [Full Text] [Related]

  • 4. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer.
    Wang DH, Kyaw AK, Park JH.
    ChemSusChem; 2015 Jan 07; 8(2):331-6. PubMed ID: 25404201
    [Abstract] [Full Text] [Related]

  • 5. Bulk heterojuction solar cells containing 6,6-dicyanofulvenes as n-type additives.
    Andrew TL, Bulović V.
    ACS Nano; 2012 Jun 26; 6(6):4671-7. PubMed ID: 22647072
    [Abstract] [Full Text] [Related]

  • 6. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.
    Tsang SW, Chen S, So F.
    Adv Mater; 2013 May 07; 25(17):2434-9. PubMed ID: 23418056
    [Abstract] [Full Text] [Related]

  • 7. Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process.
    Park B, Han MY.
    Opt Express; 2009 Aug 03; 17(16):13830-40. PubMed ID: 19654789
    [Abstract] [Full Text] [Related]

  • 8. High efficiency thin-film crystalline Si/Ge tandem solar cell.
    Sun G, Chang F, Soref RA.
    Opt Express; 2010 Feb 15; 18(4):3746-53. PubMed ID: 20389384
    [Abstract] [Full Text] [Related]

  • 9. Visibly transparent polymer solar cells produced by solution processing.
    Chen CC, Dou L, Zhu R, Chung CH, Song TB, Zheng YB, Hawks S, Li G, Weiss PS, Yang Y.
    ACS Nano; 2012 Aug 28; 6(8):7185-90. PubMed ID: 22789123
    [Abstract] [Full Text] [Related]

  • 10. Efficiency improvement of organic solar cells by tuning hole transport layer with germanium oxide.
    Choi MK, Kim JH, Yoon H, Tahk D, Seo S, Shin K, Lee HH.
    J Nanosci Nanotechnol; 2012 Jan 28; 12(1):623-8. PubMed ID: 22524030
    [Abstract] [Full Text] [Related]

  • 11. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS.
    Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H.
    Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348
    [Abstract] [Full Text] [Related]

  • 12. High efficiency graphene solar cells by chemical doping.
    Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF.
    Nano Lett; 2012 Jun 13; 12(6):2745-50. PubMed ID: 22554195
    [Abstract] [Full Text] [Related]

  • 13. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.
    Heintges GH, van Franeker JJ, Wienk MM, Janssen RA.
    Chem Commun (Camb); 2016 Jan 04; 52(1):92-5. PubMed ID: 26497230
    [Abstract] [Full Text] [Related]

  • 14. Efficient green solar cells via a chemically polymerizable donor-acceptor heterocyclic pentamer.
    Subbiah J, Beaujuge PM, Choudhury KR, Ellinger S, Reynolds JR, So F.
    ACS Appl Mater Interfaces; 2009 Jun 04; 1(6):1154-8. PubMed ID: 20355905
    [Abstract] [Full Text] [Related]

  • 15. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.
    Li G, Kang C, Li C, Lu Z, Zhang J, Gong X, Zhao G, Dong H, Hu W, Bo Z.
    Macromol Rapid Commun; 2014 Jun 04; 35(12):1142-7. PubMed ID: 24700381
    [Abstract] [Full Text] [Related]

  • 16. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.
    Khurelbaatar Z, Hyung JH, Kim GS, Park NW, Shim KH, Lee SK.
    J Nanosci Nanotechnol; 2014 Jun 04; 14(6):4394-9. PubMed ID: 24738402
    [Abstract] [Full Text] [Related]

  • 17. Nanosphere templated continuous PEDOT:PSS films with low percolation threshold for application in efficient polymer solar cells.
    Kang DJ, Kang H, Kim KH, Kim BJ.
    ACS Nano; 2012 Sep 25; 6(9):7902-9. PubMed ID: 22880844
    [Abstract] [Full Text] [Related]

  • 18. Efficient solution-processed small-molecule solar cells with inverted structure.
    Kyaw AK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger AJ.
    Adv Mater; 2013 May 07; 25(17):2397-402. PubMed ID: 23450514
    [Abstract] [Full Text] [Related]

  • 19. Highly crystalline and low bandgap donor polymers for efficient polymer solar cells.
    Liu J, Choi H, Kim JY, Bailey C, Durstock M, Dai L.
    Adv Mater; 2012 Jan 24; 24(4):538-42. PubMed ID: 22213125
    [Abstract] [Full Text] [Related]

  • 20. Novel donor-acceptor polymer containing 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole for polymer solar cells with power conversion efficiency of 6.21%.
    Han L, Bao X, Hu T, Du Z, Chen W, Zhu D, Liu Q, Sun M, Yang R.
    Macromol Rapid Commun; 2014 Jun 24; 35(12):1153-7. PubMed ID: 24664990
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.