These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 23722167

  • 21. Mechanical modulation of vertebral body growth. Implications for scoliosis progression.
    Stokes IA, Spence H, Aronsson DD, Kilmer N.
    Spine (Phila Pa 1976); 1996 May 15; 21(10):1162-7. PubMed ID: 8727190
    [Abstract] [Full Text] [Related]

  • 22. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA, Auerbach JD, Balderston RA, Kurtz SM.
    Spine (Phila Pa 1976); 2008 Nov 01; 33(23):2510-7. PubMed ID: 18978591
    [Abstract] [Full Text] [Related]

  • 23. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model.
    Chagnon A, Aubin CE, Villemure I.
    J Biomech Eng; 2010 Nov 01; 132(11):111006. PubMed ID: 21034147
    [Abstract] [Full Text] [Related]

  • 24. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK, Kim YE, Wang KC.
    Spine (Phila Pa 1976); 2009 May 20; 34(12):1281-6. PubMed ID: 19455003
    [Abstract] [Full Text] [Related]

  • 25. Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth.
    Villemure I, Chung MA, Seck CS, Kimm MH, Matyas JR, Duncan NA.
    Connect Tissue Res; 2005 May 20; 46(4-5):211-9. PubMed ID: 16546824
    [Abstract] [Full Text] [Related]

  • 26. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL, Chen CS, Lin HM, Huang LY, Liu CL, Huang CH, Cheng CK.
    J Spinal Disord Tech; 2012 Jul 20; 25(5):E140-9. PubMed ID: 22744611
    [Abstract] [Full Text] [Related]

  • 27. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD, Aultman CD, McGill SM, Callaghan JP.
    Clin Biomech (Bristol); 2005 Dec 20; 20(10):1038-45. PubMed ID: 16098646
    [Abstract] [Full Text] [Related]

  • 28. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG.
    Spine (Phila Pa 1976); 1993 Sep 01; 18(11):1531-41. PubMed ID: 8235826
    [Abstract] [Full Text] [Related]

  • 29. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP, Bennett CR.
    J Biomech; 2013 Jul 26; 46(11):1948-54. PubMed ID: 23764173
    [Abstract] [Full Text] [Related]

  • 30. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.
    Espinoza Orías AA, Malhotra NR, Elliott DM.
    Spine J; 2009 Mar 26; 9(3):204-9. PubMed ID: 18495544
    [Abstract] [Full Text] [Related]

  • 31. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model.
    Ching CT, Chow DH, Yao FY, Holmes AD.
    Clin Biomech (Bristol); 2003 Mar 26; 18(3):182-9. PubMed ID: 12620780
    [Abstract] [Full Text] [Related]

  • 32. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM, Hu SS, Lotz JC.
    Spine (Phila Pa 1976); 2003 Apr 01; 28(7):652-60. PubMed ID: 12671351
    [Abstract] [Full Text] [Related]

  • 33. Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading.
    Stokes IA, Gwadera J, Dimock A, Farnum CE, Aronsson DD.
    J Orthop Res; 2005 Jan 01; 23(1):188-95. PubMed ID: 15607892
    [Abstract] [Full Text] [Related]

  • 34. In vivo dynamic compression has less detrimental effect than static compression on newly formed bone of a rat caudal vertebra.
    Benoit A, Mustafy T, Londono I, Grimard G, Aubin CE, Villemure I.
    J Musculoskelet Neuronal Interact; 2016 Sep 07; 16(3):211-20. PubMed ID: 27609036
    [Abstract] [Full Text] [Related]

  • 35. The role of remodeling and asymmetric growth in vertebral wedging.
    Aronsson DD, Stokes IA, McBride C.
    Stud Health Technol Inform; 2010 Sep 07; 158():11-5. PubMed ID: 20543392
    [Abstract] [Full Text] [Related]

  • 36. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading.
    Kummari SR, Davis AJ, Vega LA, Ahn N, Cassinelli EH, Hernandez CJ.
    Calcif Tissue Int; 2009 Aug 07; 85(2):127-33. PubMed ID: 19488669
    [Abstract] [Full Text] [Related]

  • 37. Adaptation of mechanical, morphological, and biochemical properties of the rat growth plate to dose-dependent voluntary exercise.
    Niehoff A, Kersting UG, Zaucke F, Morlock MM, Brüggemann GP.
    Bone; 2004 Oct 07; 35(4):899-908. PubMed ID: 15454097
    [Abstract] [Full Text] [Related]

  • 38. Effect of Asymmetric Tension on Biomechanics and Metabolism of Vertebral Epiphyseal Plate in a Rodent Model of Scoliosis.
    Li QY, Zhong GB, Liu ZD, Lao LF.
    Orthop Surg; 2017 Aug 07; 9(3):311-318. PubMed ID: 28960815
    [Abstract] [Full Text] [Related]

  • 39. Progression of vertebral wedging in an asymmetrically loaded rat tail model.
    Mente PL, Stokes IA, Spence H, Aronsson DD.
    Spine (Phila Pa 1976); 1997 Jun 15; 22(12):1292-6. PubMed ID: 9201830
    [Abstract] [Full Text] [Related]

  • 40. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML, Tami AE, Netrebko P, Milz S, Docheva D.
    Technol Health Care; 2012 Jun 15; 20(5):363-78. PubMed ID: 23079942
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.