These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 23723157

  • 1. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration.
    D'Antò V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L.
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E147-54. PubMed ID: 23723157
    [Abstract] [Full Text] [Related]

  • 2. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586
    [Abstract] [Full Text] [Related]

  • 3. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH, Katti DR, Katti KS.
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [Abstract] [Full Text] [Related]

  • 4. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration.
    Raucci MG, D'Antò V, Guarino V, Sardella E, Zeppetelli S, Favia P, Ambrosio L.
    Acta Biomater; 2010 Oct; 6(10):4090-9. PubMed ID: 20417736
    [Abstract] [Full Text] [Related]

  • 5. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N, Pavasant P, Supaphol P.
    J Biomater Sci Polym Ed; 2014 Oct; 25(17):1986-2008. PubMed ID: 25291106
    [Abstract] [Full Text] [Related]

  • 6. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells.
    Xuan Y, Tang H, Wu B, Ding X, Lu Z, Li W, Xu Z.
    J Biomed Mater Res A; 2014 Oct; 102(10):3401-8. PubMed ID: 24142768
    [Abstract] [Full Text] [Related]

  • 7. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration.
    Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S.
    BMC Vet Res; 2024 Sep 09; 20(1):403. PubMed ID: 39251976
    [Abstract] [Full Text] [Related]

  • 8. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.
    Nandakumar A, Fernandes H, de Boer J, Moroni L, Habibovic P, van Blitterswijk CA.
    Macromol Biosci; 2010 Nov 10; 10(11):1365-73. PubMed ID: 20799255
    [Abstract] [Full Text] [Related]

  • 9. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds.
    Rai B, Lin JL, Lim ZX, Guldberg RE, Hutmacher DW, Cool SM.
    Biomaterials; 2010 Nov 10; 31(31):7960-70. PubMed ID: 20688388
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J.
    Proc Inst Mech Eng H; 2017 Jun 10; 231(6):555-564. PubMed ID: 28056713
    [Abstract] [Full Text] [Related]

  • 12. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering.
    Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R.
    ACS Appl Mater Interfaces; 2015 May 13; 7(18):9399-409. PubMed ID: 25893690
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds.
    Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA.
    J Biomed Mater Res A; 2010 Apr 13; 93(1):247-57. PubMed ID: 19557787
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R, Paganin P, Lora S, Dalzoppo D, Giraudo C, Miotto D, Tasso A, Barbon S, Artico M, Bianchi E, Parnigotto PP, Conconi MT, Grandi C.
    Int J Mol Med; 2014 Dec 13; 34(6):1537-46. PubMed ID: 25319350
    [Abstract] [Full Text] [Related]

  • 18. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold.
    Akkouch A, Zhang Z, Rouabhia M.
    J Biomater Appl; 2014 Feb 13; 28(6):922-36. PubMed ID: 23640860
    [Abstract] [Full Text] [Related]

  • 19. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD, Kraft DCE, Harkness L, Melsen B, Varma H, Nair PD, Kjems J, Kassem M.
    J Tissue Eng Regen Med; 2018 Mar 13; 12(3):e1537-e1548. PubMed ID: 28967188
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.