These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
814 related items for PubMed ID: 23731784
1. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S, Kabay N, Yüksel M. J Hazard Mater; 2013 Dec 15; 263 Pt 2():307-10. PubMed ID: 23731784 [Abstract] [Full Text] [Related]
2. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM, Stewart PS, Moll DJ, Mickols WE, Nelson SE, Camper AK. Biofouling; 2011 Feb 15; 27(2):173-83. PubMed ID: 21253926 [Abstract] [Full Text] [Related]
3. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Xie M, Nghiem LD, Price WE, Elimelech M. Water Res; 2012 May 15; 46(8):2683-92. PubMed ID: 22402269 [Abstract] [Full Text] [Related]
4. Rejection of trace organic compounds by high-pressure membranes. Kim TU, Amy G, Drewes JE. Water Sci Technol; 2005 May 15; 51(6-7):335-44. PubMed ID: 16003994 [Abstract] [Full Text] [Related]
5. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal. Hidalgo AM, León G, Gómez M, Murcia MD, Gómez E, Gómez JL. Environ Technol; 2011 Oct 15; 32(13-14):1497-502. PubMed ID: 22329140 [Abstract] [Full Text] [Related]
6. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes. Han J, Meng S, Dong Y, Hu J, Gao W. Water Res; 2013 Jan 01; 47(1):197-208. PubMed ID: 23127621 [Abstract] [Full Text] [Related]
7. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. Jarma YA, Karaoğlu A, Tekin Ö, Baba A, Ökten HE, Tomaszewska B, Bostancı K, Arda M, Kabay N. J Hazard Mater; 2021 Mar 05; 405():124129. PubMed ID: 33082019 [Abstract] [Full Text] [Related]
10. Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse. Wintgens T, Gallenkemper M, Melin T. Water Sci Technol; 2004 Mar 05; 50(5):1-8. PubMed ID: 15497822 [Abstract] [Full Text] [Related]
13. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. Dolar D, Vuković A, Asperger D, Kosutić K. J Environ Sci (China); 2011 Mar 05; 23(8):1299-307. PubMed ID: 22128537 [Abstract] [Full Text] [Related]
15. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Xu P, Drewes JE, Bellona C, Amy G, Kim TU, Adam M, Heberer T. Water Environ Res; 2005 Mar 05; 77(1):40-8. PubMed ID: 15765934 [Abstract] [Full Text] [Related]
16. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J, Amy G, Chung J, Sohn J, Yoon Y. Chemosphere; 2009 Sep 05; 77(2):228-35. PubMed ID: 19679331 [Abstract] [Full Text] [Related]
17. Utilization of reverse osmosis (RO) for reuse of MBR-treated wastewater in irrigation-preliminary tests and quality analysis of product water. Bunani S, Yörükoğlu E, Sert G, Kabay N, Yüksel Ü, Yüksel M, Egemen Ö, Pek TÖ. Environ Sci Pollut Res Int; 2018 Feb 05; 25(4):3030-3037. PubMed ID: 25689918 [Abstract] [Full Text] [Related]