These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


3420 related items for PubMed ID: 23734589

  • 1. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA.
    Acc Chem Res; 2013 Nov 19; 46(11):2607-15. PubMed ID: 23734589
    [Abstract] [Full Text] [Related]

  • 2. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV.
    Acc Chem Res; 2009 Dec 21; 42(12):2005-16. PubMed ID: 19888715
    [Abstract] [Full Text] [Related]

  • 3. Vibrational spectroscopy of electronic processes in emerging photovoltaic materials.
    Jeong KS, Pensack RD, Asbury JB.
    Acc Chem Res; 2013 Jul 16; 46(7):1538-47. PubMed ID: 23514085
    [Abstract] [Full Text] [Related]

  • 4. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K, Zhu H, Lian T.
    Acc Chem Res; 2015 Mar 17; 48(3):851-9. PubMed ID: 25682713
    [Abstract] [Full Text] [Related]

  • 5. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J, Verlaak S, Martinelli N, Mityashin A, Olivier Y, Van Regemorter T, D'Avino G, Muccioli L, Zannoni C, Castet F, Beljonne D, Heremans P.
    Acc Chem Res; 2013 Feb 19; 46(2):434-43. PubMed ID: 23140088
    [Abstract] [Full Text] [Related]

  • 6. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties.
    Palmstrom AF, Santra PK, Bent SF.
    Nanoscale; 2015 Aug 07; 7(29):12266-83. PubMed ID: 26147328
    [Abstract] [Full Text] [Related]

  • 7. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M, Selloni A, Fantacci S, De Angelis F.
    Top Curr Chem; 2014 Aug 07; 347():1-45. PubMed ID: 24488437
    [Abstract] [Full Text] [Related]

  • 8. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ, Larsen RE, Schwartz BJ.
    J Chem Phys; 2008 Oct 28; 129(16):164505. PubMed ID: 19045282
    [Abstract] [Full Text] [Related]

  • 9. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM, Knowles KE, Carroll GM, Gamelin DR.
    Acc Chem Res; 2015 Jul 21; 48(7):1929-37. PubMed ID: 26121552
    [Abstract] [Full Text] [Related]

  • 10. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D, Liljeroth P.
    Chem Soc Rev; 2005 Apr 21; 34(4):299-312. PubMed ID: 15778764
    [Abstract] [Full Text] [Related]

  • 11. Two-photon absorption in CdSe colloidal quantum dots compared to organic molecules.
    Makarov NS, Lau PC, Olson C, Velizhanin KA, Solntsev KM, Kieu K, Kilina S, Tretiak S, Norwood RA, Peyghambarian N, Perry JW.
    ACS Nano; 2014 Dec 23; 8(12):12572-86. PubMed ID: 25427158
    [Abstract] [Full Text] [Related]

  • 12. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B.
    Acc Chem Res; 2010 Dec 21; 43(12):1509-18. PubMed ID: 20949977
    [Abstract] [Full Text] [Related]

  • 13. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB.
    Adv Colloid Interface Sci; 2004 Nov 29; 111(1-2):79-116. PubMed ID: 15571664
    [Abstract] [Full Text] [Related]

  • 14. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM.
    Acc Chem Res; 2013 Jun 18; 46(6):1348-57. PubMed ID: 23369453
    [Abstract] [Full Text] [Related]

  • 15. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV.
    Acc Chem Res; 2012 Nov 20; 45(11):1906-15. PubMed ID: 22493938
    [Abstract] [Full Text] [Related]

  • 16. Importance of excitonic effect in charge separation at quantum-dot/organic interface: first-principles many-body calculations.
    Lee D, DuBois JL, Kanai Y.
    Nano Lett; 2014 Dec 10; 14(12):6884-8. PubMed ID: 25388898
    [Abstract] [Full Text] [Related]

  • 17. Exciton multiplication from first principles.
    Jaeger HM, Hyeon-Deuk K, Prezhdo OV.
    Acc Chem Res; 2013 Jun 18; 46(6):1280-9. PubMed ID: 23459543
    [Abstract] [Full Text] [Related]

  • 18. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ, Tisdale WA, Leschkies KS, Haugstad G, Norris DJ, Aydil ES, Zhu XY.
    ACS Nano; 2009 Jun 23; 3(6):1532-8. PubMed ID: 19456114
    [Abstract] [Full Text] [Related]

  • 19. Surface Chemistry Impact on the Light Absorption by Colloidal Quantum Dots.
    Giansante C.
    Chemistry; 2021 Oct 19; 27(58):14359-14369. PubMed ID: 34351015
    [Abstract] [Full Text] [Related]

  • 20. Structure-property relationships of curved aromatic materials from first principles.
    Zoppi L, Martin-Samos L, Baldridge KK.
    Acc Chem Res; 2014 Nov 18; 47(11):3310-20. PubMed ID: 24933397
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 171.