These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 23735792

  • 1. Characterization and interactions of anodic isolates in microbial fuel cells explored for simultaneous electricity generation and Congo red decolorization.
    Xu Q, Sun J, Hu YY, Chen J, Li WJ.
    Bioresour Technol; 2013 Aug; 142():101-8. PubMed ID: 23735792
    [Abstract] [Full Text] [Related]

  • 2. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation.
    Hou B, Sun J, Hu Y.
    Appl Microbiol Biotechnol; 2011 May; 90(4):1563-72. PubMed ID: 21468708
    [Abstract] [Full Text] [Related]

  • 3. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B, Hu Y, Sun J.
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [Abstract] [Full Text] [Related]

  • 4. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.
    Hou B, Sun J, Hu YY.
    Bioresour Technol; 2011 Mar; 102(6):4433-8. PubMed ID: 21251817
    [Abstract] [Full Text] [Related]

  • 5. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell.
    Cao Y, Hu Y, Sun J, Hou B.
    Bioelectrochemistry; 2010 Aug; 79(1):71-6. PubMed ID: 20053591
    [Abstract] [Full Text] [Related]

  • 6. Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation.
    Hou B, Lu J, Wang H, Li Y, Liu P, Liu Y, Chen J.
    Bioelectrochemistry; 2019 Aug; 128():291-297. PubMed ID: 31059969
    [Abstract] [Full Text] [Related]

  • 7. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment.
    Kong F, Wang A, Cheng H, Liang B.
    Bioresour Technol; 2014 Jan; 151():332-9. PubMed ID: 24262842
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell.
    Sun J, Li W, Li Y, Hu Y, Zhang Y.
    Bioresour Technol; 2013 Aug; 142():407-14. PubMed ID: 23748088
    [Abstract] [Full Text] [Related]

  • 10. Comparison analysis on simultaneous decolorization of Congo red and electricity generation in microbial fuel cell (MFC) with L-threonine-/conductive polymer-modified anodes.
    Li C, Luo M, Zhou S, He H, Cao J, Luo J.
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4262-4275. PubMed ID: 32935215
    [Abstract] [Full Text] [Related]

  • 11. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system.
    Li Z, Zhang X, Lin J, Han S, Lei L.
    Bioresour Technol; 2010 Jun; 101(12):4440-5. PubMed ID: 20188540
    [Abstract] [Full Text] [Related]

  • 12. Exploring characteristics of bioelectricity generation and dye decolorization of mixed and pure bacterial cultures from wine-bearing wastewater treatment.
    Han JL, Liu Y, Chang CT, Chen BY, Chen WM, Xu HZ.
    Biodegradation; 2011 Apr; 22(2):321-33. PubMed ID: 20859654
    [Abstract] [Full Text] [Related]

  • 13. Unveiling characteristics of a bioelectrochemical system with polarity reversion for simultaneous azo dye treatment and bioelectricity generation.
    Sun J, Zhang Y, Liu G, Ning X, Wang Y, Liu J.
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7295-305. PubMed ID: 25957151
    [Abstract] [Full Text] [Related]

  • 14. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri.
    Chen BY, Zhang MM, Chang CT, Ding Y, Lin KL, Chiou CS, Hsueh CC, Xu H.
    Bioresour Technol; 2010 Jun; 101(12):4737-41. PubMed ID: 20156682
    [Abstract] [Full Text] [Related]

  • 15. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri.
    Chen BY, Wang YM, Ng IS.
    Bioresour Technol; 2011 Jan; 102(2):1159-65. PubMed ID: 20932743
    [Abstract] [Full Text] [Related]

  • 16. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y, Zhao B, Zhou S, Zhong S, Zhuang L.
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [Abstract] [Full Text] [Related]

  • 17. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell.
    Dai Q, Zhang S, Liu H, Huang J, Li L.
    Bioelectrochemistry; 2020 Feb; 131():107349. PubMed ID: 31476657
    [Abstract] [Full Text] [Related]

  • 18. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.
    Kumru M, Eren H, Catal T, Bermek H, Akarsubaşi AT.
    Environ Technol; 2012 Sep; 33(16-18):2167-75. PubMed ID: 23240212
    [Abstract] [Full Text] [Related]

  • 19. Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode.
    Savizi IS, Kariminia HR, Bakhshian S.
    Environ Sci Technol; 2012 Jun 19; 46(12):6584-93. PubMed ID: 22612728
    [Abstract] [Full Text] [Related]

  • 20. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell.
    Sun J, Hu YY, Bi Z, Cao YQ.
    Bioresour Technol; 2009 Jul 19; 100(13):3185-92. PubMed ID: 19269168
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.