These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 23736438

  • 21. Particle method for computer simulation of red blood cell motion in blood flow.
    Tsubota K, Wada S, Yamaguchi T.
    Comput Methods Programs Biomed; 2006 Aug; 83(2):139-46. PubMed ID: 16879895
    [Abstract] [Full Text] [Related]

  • 22. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM, Sauret E, Saha SC, Flower RL, Gu YT.
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [Abstract] [Full Text] [Related]

  • 23. Numerical simulations of light scattering by red blood cells.
    Karlsson A, He J, Swartling J, Andersson-Engels S.
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560
    [Abstract] [Full Text] [Related]

  • 24. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.
    Kinnunen M, Kauppila A, Karmenyan A, Myllylä R.
    Opt Lett; 2011 Sep 15; 36(18):3554-6. PubMed ID: 21931388
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. A particle dynamic model of red blood cell aggregation kinetics.
    Fenech M, Garcia D, Meiselman HJ, Cloutier G.
    Ann Biomed Eng; 2009 Nov 15; 37(11):2299-309. PubMed ID: 19669883
    [Abstract] [Full Text] [Related]

  • 27. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P, Nagesh BV, Lakkegowda Y, Iyengar SS, Ananthamurthy S, Bhattacharya S.
    J Biomed Opt; 2013 Feb 15; 18(2):25001. PubMed ID: 23381225
    [Abstract] [Full Text] [Related]

  • 28. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
    Quinn DJ, Pivkin I, Wong SY, Chiam KH, Dao M, Karniadakis GE, Suresh S.
    Ann Biomed Eng; 2011 Mar 15; 39(3):1041-50. PubMed ID: 21240637
    [Abstract] [Full Text] [Related]

  • 29. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J, Zhu L, Zhang F, Dong M, Qu X.
    Appl Opt; 2019 May 20; 58(15):4042-4046. PubMed ID: 31158157
    [Abstract] [Full Text] [Related]

  • 30. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.
    Li C, Liu YP, Liu KK, Lai AK.
    IEEE Trans Nanobioscience; 2008 Mar 20; 7(1):80-90. PubMed ID: 18334458
    [Abstract] [Full Text] [Related]

  • 31. Effect of pH on red blood cell deformability.
    Kuzman D, Znidarcic T, Gros M, Vrhovec S, Svetina S, Zeks B.
    Pflugers Arch; 2000 Mar 20; 440(5 Suppl):R193-4. PubMed ID: 11005668
    [Abstract] [Full Text] [Related]

  • 32. A new method to study shape recovery of red blood cells using multiple optical trapping.
    Bronkhorst PJ, Streekstra GJ, Grimbergen J, Nijhof EJ, Sixma JJ, Brakenhoff GJ.
    Biophys J; 1995 Nov 20; 69(5):1666-73. PubMed ID: 8580310
    [Abstract] [Full Text] [Related]

  • 33. Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis.
    Chen YQ, Chen CW, Ni YL, Huang YS, Lin O, Chien S, Sung LA, Chiou A.
    J Biophotonics; 2014 Aug 20; 7(8):647-55. PubMed ID: 23963649
    [Abstract] [Full Text] [Related]

  • 34. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis.
    Wang Y, Sang J, Ao R, Ma Y, Fu B.
    Comput Methods Biomech Biomed Engin; 2020 Nov 20; 23(15):1190-1200. PubMed ID: 32772860
    [Abstract] [Full Text] [Related]

  • 35. Diffraction pattern study for cell type identification.
    Mihailescu M, Costescu J.
    Opt Express; 2012 Jan 16; 20(2):1465-74. PubMed ID: 22274490
    [Abstract] [Full Text] [Related]

  • 36. Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure.
    Xu Z, Sun X, Liu J, Song Q, Muckley M, Akkus O, Kim YL.
    J Biomed Opt; 2010 Jan 16; 15(6):060503. PubMed ID: 21198144
    [Abstract] [Full Text] [Related]

  • 37. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S, Wojdyla M, Petrov D.
    Cell Biochem Biophys; 2013 Apr 16; 65(3):347-61. PubMed ID: 23080020
    [Abstract] [Full Text] [Related]

  • 38. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.
    Yang D, Chen X, Ren S, Qu X, Tian J, Liang J.
    Appl Opt; 2013 Jan 20; 52(3):400-8. PubMed ID: 23338186
    [Abstract] [Full Text] [Related]

  • 39. Extended and knotted optical traps in three dimensions.
    Shanblatt ER, Grier DG.
    Opt Express; 2011 Mar 28; 19(7):5833-8. PubMed ID: 21451608
    [Abstract] [Full Text] [Related]

  • 40. Spatiotemporal bessel beams: theory and experiments.
    Dallaire M, McCarthy N, Piché M.
    Opt Express; 2009 Sep 28; 17(20):18148-64. PubMed ID: 19907605
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.