These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


409 related items for PubMed ID: 23748132

  • 1. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A, Alexeenko AA, Schultz SG, Kim SG.
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [Abstract] [Full Text] [Related]

  • 2. Correlation of laboratory and production freeze drying cycles.
    Kuu WY, Hardwick LM, Akers MJ.
    Int J Pharm; 2005 Sep 30; 302(1-2):56-67. PubMed ID: 16099610
    [Abstract] [Full Text] [Related]

  • 3. Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
    Alexeenko AA, Ganguly A, Nail SL.
    J Pharm Sci; 2009 Sep 30; 98(9):3483-94. PubMed ID: 19569225
    [Abstract] [Full Text] [Related]

  • 4. Use of computational fluid dynamics for improving freeze-dryers design and process understanding. Part 1: Modelling the lyophilisation chamber.
    Barresi AA, Rasetto V, Marchisio DL.
    Eur J Pharm Biopharm; 2018 Aug 30; 129():30-44. PubMed ID: 29775665
    [Abstract] [Full Text] [Related]

  • 5. Use of computational fluid dynamics for improving freeze-dryers design and process understanding. Part 2: Condenser duct and valve modelling.
    Marchisio DL, Galan M, Barresi AA.
    Eur J Pharm Biopharm; 2018 Aug 30; 129():45-57. PubMed ID: 29738819
    [Abstract] [Full Text] [Related]

  • 6. Determining Maximum Sublimation Rate for a Production Lyophilizer: Computational Modeling and Comparison With Ice Slab Tests.
    Kshirsagar V, Tchessalov S, Kanka F, Hiebert D, Alexeenko A.
    J Pharm Sci; 2019 Jan 30; 108(1):382-390. PubMed ID: 30414868
    [Abstract] [Full Text] [Related]

  • 7. Freeze-Dryer Equipment Capability Limit: Comparison of Computational Modeling With Experiments at Laboratory Scale.
    Shivkumar G, Kshirsagar V, Zhu T, Sebastiao IB, Nail SL, Sacha GA, Alexeenko AA.
    J Pharm Sci; 2019 Sep 30; 108(9):2972-2981. PubMed ID: 31004653
    [Abstract] [Full Text] [Related]

  • 8. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling.
    Ganguly A, Varma N, Sane P, Bogner R, Pikal M, Alexeenko A.
    AAPS PharmSciTech; 2017 Apr 30; 18(3):577-585. PubMed ID: 27151134
    [Abstract] [Full Text] [Related]

  • 9. On the use of a dual-scale model to improve understanding of a pharmaceutical freeze-drying process.
    Rasetto V, Marchisio DL, Fissore D, Barresi AA.
    J Pharm Sci; 2010 Oct 30; 99(10):4337-50. PubMed ID: 20301092
    [Abstract] [Full Text] [Related]

  • 10. Model for heat and mass transfer in freeze-drying of pellets.
    Trelea IC, Passot S, Marin M, Fonseca F.
    J Biomech Eng; 2009 Jul 30; 131(7):074501. PubMed ID: 19640137
    [Abstract] [Full Text] [Related]

  • 11. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T, Moussa EM, Witting M, Zhou D, Sinha K, Hirth M, Gastens M, Shang S, Nere N, Somashekar SC, Alexeenko A, Jameel F.
    Eur J Pharm Biopharm; 2018 Jul 30; 128():363-378. PubMed ID: 29733948
    [Abstract] [Full Text] [Related]

  • 12. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process.
    Giordano A, Barresi AA, Fissore D.
    J Pharm Sci; 2011 Jan 30; 100(1):311-24. PubMed ID: 20575053
    [Abstract] [Full Text] [Related]

  • 13. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles.
    Kuu WY, Hardwick LM, Akers MJ.
    Int J Pharm; 2006 Apr 26; 313(1-2):99-113. PubMed ID: 16513303
    [Abstract] [Full Text] [Related]

  • 14. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves.
    Chouvenc P, Vessot S, Andrieu J, Vacus P.
    PDA J Pharm Sci Technol; 2005 Apr 26; 59(5):298-309. PubMed ID: 16316065
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.
    Gieseler H, Kessler WJ, Finson M, Davis SJ, Mulhall PA, Bons V, Debo DJ, Pikal MJ.
    J Pharm Sci; 2007 Jul 26; 96(7):1776-93. PubMed ID: 17221854
    [Abstract] [Full Text] [Related]

  • 16. Use of soft sensors to monitor a pharmaceuticals freeze-drying process in vials.
    Bosca S, Barresi AA, Fissore D.
    Pharm Dev Technol; 2014 Mar 26; 19(2):148-59. PubMed ID: 23336717
    [Abstract] [Full Text] [Related]

  • 17. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S, Barresi AA, Fissore D.
    Eur J Pharm Biopharm; 2013 Oct 26; 85(2):253-62. PubMed ID: 23631849
    [Abstract] [Full Text] [Related]

  • 18. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P, Varma N, Ganguly A, Pikal M, Alexeenko A, Bogner RH.
    AAPS PharmSciTech; 2017 Feb 26; 18(2):369-380. PubMed ID: 26989063
    [Abstract] [Full Text] [Related]

  • 19. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.
    Gieseler H, Kramer T, Pikal MJ.
    J Pharm Sci; 2007 Dec 26; 96(12):3402-18. PubMed ID: 17853427
    [Abstract] [Full Text] [Related]

  • 20. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA, Nail SL.
    Bioprocess Technol; 1994 Dec 26; 18():317-67. PubMed ID: 7764173
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.