These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
263 related items for PubMed ID: 23756766
1. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. Tolmachova T, Tolmachov OE, Barnard AR, de Silva SR, Lipinski DM, Walker NJ, Maclaren RE, Seabra MC. J Mol Med (Berl); 2013 Jul; 91(7):825-37. PubMed ID: 23756766 [Abstract] [Full Text] [Related]
2. CHM/REP1 cDNA delivery by lentiviral vectors provides functional expression of the transgene in the retinal pigment epithelium of choroideremia mice. Tolmachova T, Tolmachov OE, Wavre-Shapton ST, Tracey-White D, Futter CE, Seabra MC. J Gene Med; 2012 Mar; 14(3):158-68. PubMed ID: 22228595 [Abstract] [Full Text] [Related]
4. Retinal Gene Therapy for Choroideremia: In Vitro Testing for Gene Augmentation Using an Adeno-Associated Viral (AAV) Vector. Patrício MI, MacLaren RE. Methods Mol Biol; 2018 Jan 07; 1715():89-97. PubMed ID: 29188508 [Abstract] [Full Text] [Related]
5. Adeno-associated virus 8-mediated gene therapy for choroideremia: preclinical studies in in vitro and in vivo models. Black A, Vasireddy V, Chung DC, Maguire AM, Gaddameedi R, Tolmachova T, Seabra M, Bennett J. J Gene Med; 2014 Jan 07; 16(5-6):122-30. PubMed ID: 24962736 [Abstract] [Full Text] [Related]
6. Choroideremia: molecular mechanisms and therapies. Sarkar H, Moosajee M. Trends Mol Med; 2022 May 07; 28(5):378-387. PubMed ID: 35341685 [Abstract] [Full Text] [Related]
7. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Int J Mol Sci; 2023 Oct 16; 24(20):. PubMed ID: 37894906 [Abstract] [Full Text] [Related]
9. Pathogenicity of a novel missense variant associated with choroideremia and its impact on gene replacement therapy. Torriano S, Erkilic N, Faugère V, Damodar K, Hamel CP, Roux AF, Kalatzis V. Hum Mol Genet; 2017 Sep 15; 26(18):3573-3584. PubMed ID: 28911202 [Abstract] [Full Text] [Related]
10. Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Duong TT, Vasireddy V, Ramachandran P, Herrera PS, Leo L, Merkel C, Bennett J, Mills JA. Stem Cell Res; 2018 Mar 15; 27():140-150. PubMed ID: 29414605 [Abstract] [Full Text] [Related]
11. Comprehensive mutation analysis (20 families) of the choroideremia gene reveals a missense variant that prevents the binding of REP1 with Rab geranylgeranyl transferase. Esposito G, De Falco F, Tinto N, Testa F, Vitagliano L, Tandurella IC, Iannone L, Rossi S, Rinaldi E, Simonelli F, Zagari A, Salvatore F. Hum Mutat; 2011 Dec 15; 32(12):1460-9. PubMed ID: 21905166 [Abstract] [Full Text] [Related]
12. AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models. Vasireddy V, Mills JA, Gaddameedi R, Basner-Tschakarjan E, Kohnke M, Black AD, Alexandrov K, Zhou S, Maguire AM, Chung DC, Mac H, Sullivan L, Gadue P, Bennicelli JL, French DL, Bennett J. PLoS One; 2013 Dec 15; 8(5):e61396. PubMed ID: 23667438 [Abstract] [Full Text] [Related]
13. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector. Barnard AR, Groppe M, MacLaren RE. Cold Spring Harb Perspect Med; 2014 Oct 30; 5(3):a017293. PubMed ID: 25359548 [Abstract] [Full Text] [Related]
14. Retinal pigment epithelium defects accelerate photoreceptor degeneration in cell type-specific knockout mouse models of choroideremia. Tolmachova T, Wavre-Shapton ST, Barnard AR, MacLaren RE, Futter CE, Seabra MC. Invest Ophthalmol Vis Sci; 2010 Oct 30; 51(10):4913-20. PubMed ID: 20445111 [Abstract] [Full Text] [Related]
15. Loss of REP1 impacts choroidal melanogenesis and vasculogenesis in choroideremia. Sarkar H, Tracey-White D, Hagag AM, Burgoyne T, Nair N, Jensen LD, Edwards MM, Moosajee M. Biochim Biophys Acta Mol Basis Dis; 2024 Feb 30; 1870(2):166963. PubMed ID: 37989423 [Abstract] [Full Text] [Related]
16. CHANGES IN RETINAL SENSITIVITY AFTER GENE THERAPY IN CHOROIDEREMIA. Fischer MD, Ochakovski GA, Beier B, Seitz IP, Vaheb Y, Kortuem C, Reichel FFL, Kuehlewein L, Kahle NA, Peters T, Girach A, Zrenner E, Ueffing M, MacLaren RE, Bartz-Schmidt K, Wilhelm B. Retina; 2020 Jan 30; 40(1):160-168. PubMed ID: 30308560 [Abstract] [Full Text] [Related]
17. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman MJ, Futter CE, Ramalho JS, Tonagel F, Tanimoto N, Seeliger MW, Huxley C, Seabra MC. J Clin Invest; 2006 Feb 30; 116(2):386-94. PubMed ID: 16410831 [Abstract] [Full Text] [Related]
18. A Novel Hypothesis on Choroideremia-Manifesting Female Carriers: Could CHM In-Frame Variants Exert a Dominant Negative Effect? A Case Report. Di Giosaffatte N, Valiante M, Tricarico S, Parise G, De Negri AM, Ricciotti G, Florean L, Paiardini A, Bottillo I, Grammatico P. Genes (Basel); 2022 Jul 17; 13(7):. PubMed ID: 35886051 [Abstract] [Full Text] [Related]
19. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient. Cereso N, Pequignot MO, Robert L, Becker F, De Luca V, Nabholz N, Rigau V, De Vos J, Hamel CP, Kalatzis V. Mol Ther Methods Clin Dev; 2014 Jul 17; 1():14011. PubMed ID: 26015956 [Abstract] [Full Text] [Related]
20. Rapid degradation of dominant-negative Rab27 proteins in vivo precludes their use in transgenic mouse models. Ramalho JS, Anders R, Jaissle GB, Seeliger MW, Huxley C, Seabra MC. BMC Cell Biol; 2002 Oct 28; 3():26. PubMed ID: 12401133 [Abstract] [Full Text] [Related] Page: [Next] [New Search]