These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
512 related items for PubMed ID: 23757480
1. Minimising contributions from scattering in infrared spectra by means of an integrating sphere. Dazzi A, Deniset-Besseau A, Lasch P. Analyst; 2013 Jul 21; 138(14):4191-201. PubMed ID: 23757480 [Abstract] [Full Text] [Related]
2. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles. Lukacs R, Blümel R, Zimmerman B, Bağcıoğlu M, Kohler A. Analyst; 2015 May 07; 140(9):3273-84. PubMed ID: 25797528 [Abstract] [Full Text] [Related]
3. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'. Bassan P, Byrne HJ, Bonnier F, Lee J, Dumas P, Gardner P. Analyst; 2009 Aug 07; 134(8):1586-93. PubMed ID: 20448924 [Abstract] [Full Text] [Related]
4. Recovery of absorption spectra from Fourier transform infrared (FT-IR) microspectroscopic measurements of intact spheres. van Dijk T, Mayerich D, Carney PS, Bhargava R. Appl Spectrosc; 2013 May 07; 67(5):546-52. PubMed ID: 23643044 [Abstract] [Full Text] [Related]
5. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction. Kohler A, Sulé-Suso J, Sockalingum GD, Tobin M, Bahrami F, Yang Y, Pijanka J, Dumas P, Cotte M, van Pittius DG, Parkes G, Martens H. Appl Spectrosc; 2008 Mar 07; 62(3):259-66. PubMed ID: 18339231 [Abstract] [Full Text] [Related]
6. FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm. Bassan P, Sachdeva A, Kohler A, Hughes C, Henderson A, Boyle J, Shanks JH, Brown M, Clarke NW, Gardner P. Analyst; 2012 Mar 21; 137(6):1370-7. PubMed ID: 22318917 [Abstract] [Full Text] [Related]
7. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Gebhart SC, Lin WC, Mahadevan-Jansen A. Phys Med Biol; 2006 Apr 21; 51(8):2011-27. PubMed ID: 16585842 [Abstract] [Full Text] [Related]
8. Reflection optical two-dimensional Fourier-transform spectroscopy. Li H, Moody G, Cundiff ST. Opt Express; 2013 Jan 28; 21(2):1687-92. PubMed ID: 23389154 [Abstract] [Full Text] [Related]
9. Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits. Lu HS, Xu HR, Ying YB, Fu XP, Yu HY, Tian HQ. J Zhejiang Univ Sci B; 2006 Oct 28; 7(10):794-9. PubMed ID: 16972321 [Abstract] [Full Text] [Related]
11. Reflection and transmission measurements with an integrating sphere and Fourier-transform infrared spectrometer. Ojala KT, Koski E, Lampinen MJ. Appl Opt; 1992 Aug 01; 31(22):4582-9. PubMed ID: 20725464 [Abstract] [Full Text] [Related]
12. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets. Kessler W, Oelkrug D, Kessler R. Anal Chim Acta; 2009 May 29; 642(1-2):127-34. PubMed ID: 19427467 [Abstract] [Full Text] [Related]
15. Dielectric Sphere Clusters as a Model to Understand Infrared Spectroscopic Imaging Data Recorded from Complex Samples. Rasskazov IL, Spegazzini N, Carney PS, Bhargava R. Anal Chem; 2017 Oct 17; 89(20):10813-10818. PubMed ID: 28895722 [Abstract] [Full Text] [Related]
20. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N, Gardner P. J Biophotonics; 2010 Aug 20; 3(8-9):609-20. PubMed ID: 20414907 [Abstract] [Full Text] [Related] Page: [Next] [New Search]