These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
417 related items for PubMed ID: 23759119
21. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. All AH, Bazley FA, Gupta S, Pashai N, Hu C, Pourmorteza A, Kerr C. PLoS One; 2012; 7(10):e47645. PubMed ID: 23091637 [Abstract] [Full Text] [Related]
23. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin. Růžička J, Romanyuk N, Hejčl A, Vetrík M, Hrubý M, Cocks G, Cihlár J, Přádný M, Price J, Syková E, Jendelová P. Acta Neurobiol Exp (Wars); 2013; 73(1):102-15. PubMed ID: 23595287 [Abstract] [Full Text] [Related]
24. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing. Nagoshi N, Khazaei M, Ahlfors JE, Ahuja CS, Nori S, Wang J, Shibata S, Fehlings MG. Stem Cells Transl Med; 2018 Nov; 7(11):806-818. PubMed ID: 30085415 [Abstract] [Full Text] [Related]
26. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E. J Neurosci Res; 2004 Apr 15; 76(2):232-43. PubMed ID: 15048921 [Abstract] [Full Text] [Related]
27. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord. Emgård M, Piao J, Aineskog H, Liu J, Calzarossa C, Odeberg J, Holmberg L, Samuelsson EB, Bezubik B, Vincent PH, Falci SP, Seiger Å, Åkesson E, Sundström E. Exp Neurol; 2014 Mar 15; 253():138-45. PubMed ID: 24412492 [Abstract] [Full Text] [Related]
30. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice. Kong D, Feng B, Amponsah AE, He J, Guo R, Liu B, Du X, Liu X, Zhang S, Lv F, Ma J, Cui H. Stem Cell Res Ther; 2021 Mar 11; 12(1):172. PubMed ID: 33706803 [Abstract] [Full Text] [Related]
31. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR. J Neurosci; 2005 Jul 27; 25(30):6947-57. PubMed ID: 16049170 [Abstract] [Full Text] [Related]
33. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Ban DX, Ning GZ, Feng SQ, Wang Y, Zhou XH, Liu Y, Chen JT. Regen Med; 2011 Nov 27; 6(6):707-20. PubMed ID: 22050523 [Abstract] [Full Text] [Related]
35. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Syková E, Jendelová P. Ann N Y Acad Sci; 2005 May 27; 1049():146-60. PubMed ID: 15965114 [Abstract] [Full Text] [Related]
39. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury. Zhang LQ, Zhang WM, Deng L, Xu ZX, Lan WB, Lin JH. Cell Transplant; 2018 Mar 27; 27(3):471-484. PubMed ID: 29756516 [Abstract] [Full Text] [Related]