These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


411 related items for PubMed ID: 23774164

  • 1. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.
    Suzuki I, Fukuda M, Shirakawa K, Jiko H, Gotoh M.
    Biosens Bioelectron; 2013 Nov 15; 49():270-5. PubMed ID: 23774164
    [Abstract] [Full Text] [Related]

  • 2. An 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid.
    Chih YK, Yang MC.
    Bioelectrochemistry; 2013 Jun 15; 91():44-51. PubMed ID: 23416360
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays.
    Kopanitsa MV, Afinowi NO, Grant SG.
    BMC Neurosci; 2006 Aug 30; 7():61. PubMed ID: 16942609
    [Abstract] [Full Text] [Related]

  • 5. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, Ben-Jacob E, Hanein Y.
    Biomed Microdevices; 2009 Apr 30; 11(2):495-501. PubMed ID: 19067173
    [Abstract] [Full Text] [Related]

  • 6. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection.
    Chuang MC, Lai HY, Annie Ho JA, Chen YY.
    Biosens Bioelectron; 2013 Mar 15; 41():602-7. PubMed ID: 23083904
    [Abstract] [Full Text] [Related]

  • 7. Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease.
    Calabresi P, Mercuri NB, Sancesario G, Bernardi G.
    Brain; 1993 Apr 15; 116 ( Pt 2)():433-52. PubMed ID: 8096420
    [Abstract] [Full Text] [Related]

  • 8. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection.
    Baldrich E, Gómez R, Gabriel G, Muñoz FX.
    Biosens Bioelectron; 2011 Jan 15; 26(5):1876-82. PubMed ID: 20378329
    [Abstract] [Full Text] [Related]

  • 9. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM, Patel NA, Freedman NC, Castagnola E, Cui XT.
    Anal Chem; 2019 Oct 15; 91(20):12917-12927. PubMed ID: 31512849
    [Abstract] [Full Text] [Related]

  • 10. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G, Gómez R, Bongard M, Benito N, Fernández E, Villa R.
    Biosens Bioelectron; 2009 Mar 15; 24(7):1942-8. PubMed ID: 19056255
    [Abstract] [Full Text] [Related]

  • 11. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.
    Pumera M, Merkoçi A, Alegret S.
    Electrophoresis; 2007 Apr 15; 28(8):1274-80. PubMed ID: 17366488
    [Abstract] [Full Text] [Related]

  • 12. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S, Rand DR, Cott DJ, Loo J, Bartic C, Eberle W, Nuttin B, Borghs G.
    ACS Nano; 2012 Jun 26; 6(6):4615-28. PubMed ID: 22551016
    [Abstract] [Full Text] [Related]

  • 13. The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation.
    Parker RA, Negi S, Davis T, Keefer EW, Wiggins H, House PA, Greger B.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012 Jun 26; 2012():791-4. PubMed ID: 23366011
    [Abstract] [Full Text] [Related]

  • 14. Highly sensitive reduced graphene oxide microelectrode array sensor.
    Ng AM, Kenry, Teck Lim C, Low HY, Loh KP.
    Biosens Bioelectron; 2015 Mar 15; 65():265-73. PubMed ID: 25461168
    [Abstract] [Full Text] [Related]

  • 15. Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode.
    Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG, Unwin PR, Macpherson JV.
    Anal Chem; 2013 Jan 02; 85(1):163-9. PubMed ID: 23190004
    [Abstract] [Full Text] [Related]

  • 16. Nanomolar detection of dopamine at multi-walled carbon nanotube grafted silica network/gold nanoparticle functionalised nanocomposite electrodes.
    Komathi S, Gopalan AI, Lee KP.
    Analyst; 2010 Feb 02; 135(2):397-404. PubMed ID: 20098776
    [Abstract] [Full Text] [Related]

  • 17. The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes.
    Wang CH, Wu CH, Wu JW, Lee MT, Chang JK, Ger MD, Sun CL.
    Analyst; 2013 Jan 21; 138(2):576-82. PubMed ID: 23172364
    [Abstract] [Full Text] [Related]

  • 18. Carbon-nanotube-modified electrodes for highly efficient acute neural recording.
    Shin JH, Kim GB, Lee EJ, An T, Shin K, Lee SE, Choi W, Lee S, Latchoumane C, Shin HS, Lim G.
    Adv Healthc Mater; 2014 Feb 21; 3(2):245-52. PubMed ID: 23950033
    [Abstract] [Full Text] [Related]

  • 19. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
    Sameenoi Y, Mensack MM, Boonsong K, Ewing R, Dungchai W, Chailapakul O, Cropek DM, Henry CS.
    Analyst; 2011 Aug 07; 136(15):3177-84. PubMed ID: 21698305
    [Abstract] [Full Text] [Related]

  • 20. Analog neuromorphic module based on carbon nanotube synapses.
    Shen AM, Chen CL, Kim K, Cho B, Tudor A, Chen Y.
    ACS Nano; 2013 Jul 23; 7(7):6117-22. PubMed ID: 23806075
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.