These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
424 related items for PubMed ID: 23791109
1. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Shaw AK, Hossain Z. Chemosphere; 2013 Oct; 93(6):906-15. PubMed ID: 23791109 [Abstract] [Full Text] [Related]
2. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Nair PM, Chung IM. Chemosphere; 2014 Oct; 112():105-13. PubMed ID: 25048895 [Abstract] [Full Text] [Related]
3. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R. Ecotoxicol Environ Saf; 2009 May; 72(4):1102-10. PubMed ID: 19013643 [Abstract] [Full Text] [Related]
4. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B. Int J Phytoremediation; 2013 May; 15(6):513-21. PubMed ID: 23819293 [Abstract] [Full Text] [Related]
5. Impact of CuO nanoparticles on maize: Comparison with CuO bulk particles with special reference to oxidative stress damages and antioxidant defense status. Roy D, Adhikari S, Adhikari A, Ghosh S, Azahar I, Basuli D, Hossain Z. Chemosphere; 2022 Jan; 287(Pt 1):131911. PubMed ID: 34461334 [Abstract] [Full Text] [Related]
6. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L. Wang W, Liu J, Ren Y, Zhang L, Xue Y, Zhang L, He J. Bull Environ Contam Toxicol; 2020 Jun; 104(6):770-777. PubMed ID: 32328666 [Abstract] [Full Text] [Related]
11. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL. Environ Sci Technol; 2013 Jun 04; 47(11):5635-42. PubMed ID: 23662857 [Abstract] [Full Text] [Related]
14. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice]. Wang SL, Zhang YX, Liu HZ, Xin H. Huan Jing Ke Xue; 2014 May 04; 35(5):1968-73. PubMed ID: 25055694 [Abstract] [Full Text] [Related]
15. Copper oxide nanoparticles mitigate cadmium toxicity in rice seedlings through multiple physiological mechanisms. Jia X, He J, Yan T, Lu D, Xu H, Li K, Ren Y. Environ Sci Pollut Res Int; 2024 Aug 04; 31(36):49026-49039. PubMed ID: 39042189 [Abstract] [Full Text] [Related]
17. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Wang X, Sun W, Ma X. Environ Pollut; 2019 Sep 04; 252(Pt B):967-973. PubMed ID: 31252135 [Abstract] [Full Text] [Related]
18. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK. Chemosphere; 2011 Jul 04; 84(5):592-600. PubMed ID: 21561640 [Abstract] [Full Text] [Related]
19. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system. Galhano V, Peixoto F, Gomes-Laranjo J. Environ Toxicol; 2010 Oct 04; 25(5):517-26. PubMed ID: 20549627 [Abstract] [Full Text] [Related]
20. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Azhar W, Khan AR, Salam A, Ulhassan Z, Qi J, Shah G, Liu Y, Chunyan Y, Yang S, Gan Y. Environ Sci Pollut Res Int; 2023 Feb 04; 30(10):26137-26149. PubMed ID: 36350451 [Abstract] [Full Text] [Related] Page: [Next] [New Search]