These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
705 related items for PubMed ID: 23799231
21. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements. Ganbold EO, Kang T, Lee K, Lee SY, Joo SW. Colloids Surf B Biointerfaces; 2012 May 01; 93():148-53. PubMed ID: 22261178 [Abstract] [Full Text] [Related]
22. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid. Sun J, Liu R, Tang J, Zhang Z, Zhou X, Liu J. ACS Appl Mater Interfaces; 2015 Aug 05; 7(30):16730-7. PubMed ID: 26167718 [Abstract] [Full Text] [Related]
23. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids]. Li SJ, Qiu LQ, Cao PG, Gu RA. Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec 05; 24(12):1575-8. PubMed ID: 15828331 [Abstract] [Full Text] [Related]
24. Controllable synthesis and SERS characteristics of hollow sea-urchin gold nanoparticles. Li J, Zhou J, Jiang T, Wang B, Gu M, Petti L, Mormile P. Phys Chem Chem Phys; 2014 Dec 14; 16(46):25601-8. PubMed ID: 25352224 [Abstract] [Full Text] [Related]
25. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects. Wang MH, Hu JW, Li YJ, Yeung ES. Nanotechnology; 2010 Apr 09; 21(14):145608. PubMed ID: 20234084 [Abstract] [Full Text] [Related]
26. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I, Yehye WA, Julkapli NM, Rahmati S, Sina AA, Basirun WJ, Johan MR. Biosens Bioelectron; 2019 Apr 15; 131():214-223. PubMed ID: 30844598 [Abstract] [Full Text] [Related]
27. Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Tian YF, Ning CF, He F, Yin BC, Ye BC. Analyst; 2018 Oct 08; 143(20):4915-4922. PubMed ID: 30225507 [Abstract] [Full Text] [Related]
28. Surface-enhanced Raman scattering of 4,4'-dimercaptoazobenzene trapped in Au nanogaps. Kim K, Shin D, Kim KL, Shin KS. Phys Chem Chem Phys; 2012 Mar 28; 14(12):4095-100. PubMed ID: 22334144 [Abstract] [Full Text] [Related]
29. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates. Cheng HW, Huan SY, Wu HL, Shen GL, Yu RQ. Anal Chem; 2009 Dec 15; 81(24):9902-12. PubMed ID: 19928907 [Abstract] [Full Text] [Related]
30. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Ye Y, Liu H, Yang L, Liu J. Nanoscale; 2012 Oct 21; 4(20):6442-8. PubMed ID: 22955571 [Abstract] [Full Text] [Related]
31. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A, Szymborski T, Jaroch T, Zmysłowski A, Szterk A. Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():208-217. PubMed ID: 29519430 [Abstract] [Full Text] [Related]
32. Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. Yan J, Su S, He S, He Y, Zhao B, Wang D, Zhang H, Huang Q, Song S, Fan C. Anal Chem; 2012 Nov 06; 84(21):9139-45. PubMed ID: 23046056 [Abstract] [Full Text] [Related]
34. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Meng F, Ma X, Duan N, Wu S, Xia Y, Wang Z, Xu B. Talanta; 2017 Apr 01; 165():412-418. PubMed ID: 28153276 [Abstract] [Full Text] [Related]
35. Paper-based bioassays using gold nanoparticle colorimetric probes. Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y. Anal Chem; 2008 Nov 15; 80(22):8431-7. PubMed ID: 18847216 [Abstract] [Full Text] [Related]
36. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes. Sun L, Sun Y, Xu F, Zhang Y, Yang T, Guo C, Liu Z, Li Z. Nanotechnology; 2009 Mar 25; 20(12):125502. PubMed ID: 19420468 [Abstract] [Full Text] [Related]
37. Control of gold nanoparticles based on circular DNA strand displacement. Zhang C, Ma J, Yang J, Dong Y, Xu J. J Colloid Interface Sci; 2014 Mar 15; 418():31-6. PubMed ID: 24461814 [Abstract] [Full Text] [Related]
38. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S. Anal Chem; 2015 Jan 06; 87(1):663-9. PubMed ID: 25494815 [Abstract] [Full Text] [Related]
39. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe. Li X, Wang L, Li C. Chemistry; 2015 Apr 27; 21(18):6817-22. PubMed ID: 25766032 [Abstract] [Full Text] [Related]
40. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH. Anal Chem; 2014 Jul 01; 86(13):6262-7. PubMed ID: 24873535 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]