These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


59 related items for PubMed ID: 23808670

  • 1. Structural glycobiology of heparinase II from Pedobacter heparinus.
    Fernandes CL, Escouto GB, Verli H.
    J Biomol Struct Dyn; 2014; 32(7):1092-102. PubMed ID: 23808670
    [Abstract] [Full Text] [Related]

  • 2. Exploring bacterial heparinase II activities with defined substrates.
    Bohlmann L, Chang CW, Beacham I, von Itzstein M.
    Chembiochem; 2015 May 26; 16(8):1205-11. PubMed ID: 25907974
    [Abstract] [Full Text] [Related]

  • 3. Expanding the Catalytic Promiscuity of Heparinase III from Pedobacter heparinus.
    Gu Y, Lu M, Wang Z, Wu X, Chen Y.
    Chemistry; 2017 Feb 21; 23(11):2548-2551. PubMed ID: 28067452
    [Abstract] [Full Text] [Related]

  • 4. Crystallization and preliminary X-ray analysis of heparinase II from Pedobacter heparinus.
    Shaya D, Li Y, Cygler M.
    Acta Crystallogr D Biol Crystallogr; 2004 Sep 21; 60(Pt 9):1644-6. PubMed ID: 15333943
    [Abstract] [Full Text] [Related]

  • 5. Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product.
    Shaya D, Tocilj A, Li Y, Myette J, Venkataraman G, Sasisekharan R, Cygler M.
    J Biol Chem; 2006 Jun 02; 281(22):15525-35. PubMed ID: 16565082
    [Abstract] [Full Text] [Related]

  • 6. Crystal structure of Pedobacter heparinus heparin lyase Hep III with the active site in a deep cleft.
    Hashimoto W, Maruyama Y, Nakamichi Y, Mikami B, Murata K.
    Biochemistry; 2014 Feb 04; 53(4):777-86. PubMed ID: 24437462
    [Abstract] [Full Text] [Related]

  • 7. Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate.
    Shaya D, Zhao W, Garron ML, Xiao Z, Cui Q, Zhang Z, Sulea T, Linhardt RJ, Cygler M.
    J Biol Chem; 2010 Jun 25; 285(26):20051-61. PubMed ID: 20404324
    [Abstract] [Full Text] [Related]

  • 8. Identification and Characterization of Two Novel Alpha-D-Galactosidases from Pedobacter heparinus.
    Kulinich A, Liu S, Ma HY, Lv YM, Liu L, Voglmeir J.
    Protein Pept Lett; 2015 Jun 25; 22(12):1052-9. PubMed ID: 26369952
    [Abstract] [Full Text] [Related]

  • 9. Production of a low molecular weight heparin using recombinant glycuronidase [corrected].
    Su G, Li L, Huang H, Zhong W, Yu P, Zhang F, Linhardt RJ.
    Carbohydr Polym; 2015 Dec 10; 134():151-7. PubMed ID: 26428111
    [Abstract] [Full Text] [Related]

  • 10. Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis.
    Godavarti R, Cooney CL, Langer R, Sasisekharan R.
    Biochemistry; 1996 May 28; 35(21):6846-52. PubMed ID: 8639636
    [Abstract] [Full Text] [Related]

  • 11. Heparinase III from Flavobacterium heparinum: cloning and recombinant expression in Escherichia coli.
    Godavarti R, Davis M, Venkataraman G, Cooney C, Langer R, Sasisekharan R.
    Biochem Biophys Res Commun; 1996 Aug 23; 225(3):751-8. PubMed ID: 8780685
    [Abstract] [Full Text] [Related]

  • 12. On the catalytic mechanism of polysaccharide lyases: evidence of His and Tyr involvement in heparin lysis by heparinase I and the role of Ca2+.
    Córdula CR, Lima MA, Shinjo SK, Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Verli H, Yates EA, Rudd TR, Pinhal MA, Toma L, Dietrich CP, Nader HB, Tersariol IL.
    Mol Biosyst; 2014 Jan 23; 10(1):54-64. PubMed ID: 24232366
    [Abstract] [Full Text] [Related]

  • 13. A comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum.
    Godavarti R, Sasisekharan R.
    Biochem Biophys Res Commun; 1996 Dec 24; 229(3):770-7. PubMed ID: 8954971
    [Abstract] [Full Text] [Related]

  • 14. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D, Jancsó A, Szunyogh D, Matyuska F, Nagy NV, Hoffmann E, Körtvélyesi T, Gajda T.
    J Inorg Biochem; 2012 Jan 24; 106(1):10-8. PubMed ID: 22105012
    [Abstract] [Full Text] [Related]

  • 15. A Surface Loop in the N-Terminal Domain of Pedobacter heparinus Heparin Lyase II is Important for Activity.
    Mori M, Ichikawa M, Kiguchi Y, Miyazaki T, Hattori M, Nishikawa A, Tonozuka T.
    J Appl Glycosci (1999); 2016 Jan 24; 63(1):7-11. PubMed ID: 34354475
    [Abstract] [Full Text] [Related]

  • 16. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III.
    Wu J, Zhang C, Mei X, Li Y, Xing XH.
    Carbohydr Polym; 2014 Jan 30; 101():484-92. PubMed ID: 24299802
    [Abstract] [Full Text] [Related]

  • 17. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E, Bogatko S, Weare JH, Fulton JL, Schenter GK, Bylaska EJ.
    J Chem Phys; 2010 May 21; 132(19):194502. PubMed ID: 20499974
    [Abstract] [Full Text] [Related]

  • 18. Molecular dynamics simulations of matrix metalloproteinase 2: role of the structural metal ions.
    Díaz N, Suarez D.
    Biochemistry; 2007 Aug 07; 46(31):8943-52. PubMed ID: 17616173
    [Abstract] [Full Text] [Related]

  • 19. Electrospray ionization mass spectrometric analysis of κ-carrageenan oligosaccharides obtained by degradation with κ-carrageenase from Pedobacter hainanensis.
    Sun Y, Liu Y, Jiang K, Wang C, Wang Z, Huang L.
    J Agric Food Chem; 2014 Mar 19; 62(11):2398-405. PubMed ID: 24606162
    [Abstract] [Full Text] [Related]

  • 20. A structural basis for depolymerization of alginate by polysaccharide lyase family-7.
    Yamasaki M, Ogura K, Hashimoto W, Mikami B, Murata K.
    J Mol Biol; 2005 Sep 09; 352(1):11-21. PubMed ID: 16081095
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.