These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 23825069

  • 1. Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function.
    Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S.
    Am J Physiol Renal Physiol; 2013 Sep 15; 305(6):F881-90. PubMed ID: 23825069
    [Abstract] [Full Text] [Related]

  • 2. Increasing cGMP-dependent protein kinase activity attenuates unilateral ureteral obstruction-induced renal fibrosis.
    Cui W, Maimaitiyiming H, Qi X, Norman H, Zhou Q, Wang X, Fu J, Wang S.
    Am J Physiol Renal Physiol; 2014 May 01; 306(9):F996-1007. PubMed ID: 24573388
    [Abstract] [Full Text] [Related]

  • 3. The pathological role of Bax in cisplatin nephrotoxicity.
    Wei Q, Dong G, Franklin J, Dong Z.
    Kidney Int; 2007 Jul 01; 72(1):53-62. PubMed ID: 17410096
    [Abstract] [Full Text] [Related]

  • 4. 3-deazaneplanocin A protects against cisplatin-induced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression.
    Ni J, Hou X, Wang X, Shi Y, Xu L, Zheng X, Liu N, Qiu A, Zhuang S.
    Cell Death Dis; 2019 May 01; 10(5):355. PubMed ID: 31043583
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity.
    Zsengellér ZK, Ellezian L, Brown D, Horváth B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P.
    J Histochem Cytochem; 2012 Jul 01; 60(7):521-9. PubMed ID: 22511597
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury.
    Wang Y, Tang C, Cai J, Chen G, Zhang D, Zhang Z, Dong Z.
    Cell Death Dis; 2018 Nov 01; 9(11):1113. PubMed ID: 30385753
    [Abstract] [Full Text] [Related]

  • 9. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
    Livingston MJ, Wang J, Zhou J, Wu G, Ganley IG, Hill JA, Yin XM, Dong Z.
    Autophagy; 2019 Dec 01; 15(12):2142-2162. PubMed ID: 31066324
    [Abstract] [Full Text] [Related]

  • 10. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury.
    Chen CL, Liao JW, Hu OY, Pao LH.
    Arch Toxicol; 2016 Sep 01; 90(9):2249-2260. PubMed ID: 26438401
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer.
    Pabla N, Dong G, Jiang M, Huang S, Kumar MV, Messing RO, Dong Z.
    J Clin Invest; 2011 Jul 01; 121(7):2709-22. PubMed ID: 21633170
    [Abstract] [Full Text] [Related]

  • 12. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function.
    Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Sueyasu K, Washida N, Tokuyama H, Tzukerman M, Skorecki K, Hayashi K, Itoh H.
    J Biol Chem; 2010 Apr 23; 285(17):13045-56. PubMed ID: 20139070
    [Abstract] [Full Text] [Related]

  • 13. Hexapeptide derived from prothymosin alpha attenuates cisplatin-induced acute kidney injury.
    Torigoe K, Obata Y, Torigoe M, Oka S, Yamamoto K, Koji T, Ueda H, Mukae H, Nishino T.
    Clin Exp Nephrol; 2020 May 23; 24(5):411-419. PubMed ID: 31912273
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Autophagy in proximal tubules protects against acute kidney injury.
    Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z.
    Kidney Int; 2012 Dec 23; 82(12):1271-83. PubMed ID: 22854643
    [Abstract] [Full Text] [Related]

  • 16. Cyclic GMP/protein kinase G type-Iα (PKG-Iα) signaling pathway promotes CREB phosphorylation and maintains higher c-IAP1, livin, survivin, and Mcl-1 expression and the inhibition of PKG-Iα kinase activity synergizes with cisplatin in non-small cell lung cancer cells.
    Wong JC, Bathina M, Fiscus RR.
    J Cell Biochem; 2012 Nov 23; 113(11):3587-98. PubMed ID: 22740515
    [Abstract] [Full Text] [Related]

  • 17. Protein extracted from Porphyra yezoensis prevents cisplatin-induced nephrotoxicity by downregulating the MAPK and NF-κB pathways.
    Kim IH, Kwon MJ, Jung JH, Nam TJ.
    Int J Mol Med; 2018 Jan 23; 41(1):511-520. PubMed ID: 29115386
    [Abstract] [Full Text] [Related]

  • 18. Overexpression of cGMP-dependent protein kinase I (PKG-I) attenuates ischemia-reperfusion-induced kidney injury.
    Li Y, Tong X, Maimaitiyiming H, Clemons K, Cao JM, Wang S.
    Am J Physiol Renal Physiol; 2012 Mar 01; 302(5):F561-70. PubMed ID: 22160771
    [Abstract] [Full Text] [Related]

  • 19. MicroRNA-709 Mediates Acute Tubular Injury through Effects on Mitochondrial Function.
    Guo Y, Ni J, Chen S, Bai M, Lin J, Ding G, Zhang Y, Sun P, Jia Z, Huang S, Yang L, Zhang A.
    J Am Soc Nephrol; 2018 Feb 01; 29(2):449-461. PubMed ID: 29042455
    [Abstract] [Full Text] [Related]

  • 20. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis.
    Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z.
    Oncogene; 2006 Jul 06; 25(29):4056-66. PubMed ID: 16491117
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.