These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
455 related items for PubMed ID: 23827548
1. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Kim HE, Kim SE. Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1102-8. PubMed ID: 23827548 [Abstract] [Full Text] [Related]
5. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA, Rizkalla AS, Mequanint K. Langmuir; 2010 Dec 07; 26(23):18340-8. PubMed ID: 21050002 [Abstract] [Full Text] [Related]
6. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(ε-caprolactone) polymer for bone tissue regeneration. Lei B, Shin KH, Noh DY, Koh YH, Choi WY, Kim HE. J Biomed Mater Res B Appl Biomater; 2012 May 07; 100(4):967-75. PubMed ID: 22279025 [Abstract] [Full Text] [Related]
7. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application. Tong SY, Wang Z, Lim PN, Wang W, Thian ES. Mater Sci Eng C Mater Biol Appl; 2017 Jan 01; 70(Pt 2):1149-1155. PubMed ID: 27772716 [Abstract] [Full Text] [Related]
9. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H. Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():437-45. PubMed ID: 24268280 [Abstract] [Full Text] [Related]
10. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, Appleyard RC, Zreiqat H. Acta Biomater; 2011 Mar 01; 7(3):1307-18. PubMed ID: 20971219 [Abstract] [Full Text] [Related]
11. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA, Rizkalla AS, Mequanint K. ACS Appl Mater Interfaces; 2012 Jun 27; 4(6):3148-56. PubMed ID: 22625179 [Abstract] [Full Text] [Related]
13. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. Jo JH, Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. J Biomed Mater Res B Appl Biomater; 2009 Oct 27; 91(1):213-20. PubMed ID: 19422050 [Abstract] [Full Text] [Related]
14. Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications. Mohammadkhah A, Marquardt LM, Sakiyama-Elbert SE, Day DE, Harkins AB. Mater Sci Eng C Mater Biol Appl; 2015 Apr 27; 49():632-639. PubMed ID: 25686992 [Abstract] [Full Text] [Related]
15. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Bagchi A, Meka SR, Rao BN, Chatterjee K. Nanotechnology; 2014 Dec 05; 25(48):485101. PubMed ID: 25379989 [Abstract] [Full Text] [Related]
16. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R. J Biomed Nanotechnol; 2013 Mar 05; 9(3):430-40. PubMed ID: 23620999 [Abstract] [Full Text] [Related]