These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


410 related items for PubMed ID: 23827628

  • 1. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control.
    Wagner DE, Jones AD, Zhou H, Bhaduri SB.
    Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1710-9. PubMed ID: 23827628
    [Abstract] [Full Text] [Related]

  • 2. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure.
    Li B, Chen X, Guo B, Wang X, Fan H, Zhang X.
    Acta Biomater; 2009 Jan 01; 5(1):134-43. PubMed ID: 18799376
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.
    Zhou H, Agarwal AK, Goel VK, Bhaduri SB.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 01; 33(7):4288-94. PubMed ID: 23910345
    [Abstract] [Full Text] [Related]

  • 5. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.
    Morimoto S, Anada T, Honda Y, Suzuki O.
    Biomed Mater; 2012 Aug 01; 7(4):045020. PubMed ID: 22740587
    [Abstract] [Full Text] [Related]

  • 6. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.
    Costa DO, Dixon SJ, Rizkalla AS.
    ACS Appl Mater Interfaces; 2012 Mar 01; 4(3):1490-9. PubMed ID: 22296410
    [Abstract] [Full Text] [Related]

  • 7. Mesenchymal cell response to nanosized biphasic calcium phosphate composites.
    Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A.
    Colloids Surf B Biointerfaces; 2009 Oct 01; 73(1):146-51. PubMed ID: 19524412
    [Abstract] [Full Text] [Related]

  • 8. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity.
    Monchau F, Hivart P, Genestie B, Chai F, Descamps M, Hildebrand HF.
    Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):490-8. PubMed ID: 25428100
    [Abstract] [Full Text] [Related]

  • 9. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.
    Behnamghader A, Bagheri N, Raissi B, Moztarzadeh F.
    J Mater Sci Mater Med; 2008 Jan 01; 19(1):197-201. PubMed ID: 17597356
    [Abstract] [Full Text] [Related]

  • 10. The osteogenic properties of CaP/silk composite scaffolds.
    Zhang Y, Wu C, Friis T, Xiao Y.
    Biomaterials; 2010 Apr 01; 31(10):2848-56. PubMed ID: 20071025
    [Abstract] [Full Text] [Related]

  • 11. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate.
    Li Y, Weng W, Tam KC.
    Acta Biomater; 2007 Mar 01; 3(2):251-4. PubMed ID: 16979393
    [Abstract] [Full Text] [Related]

  • 12. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M, Moseke C, Ewald A, Gbureck U, Groll J, Pires I, Teßmar J, Vorndran E.
    Biofabrication; 2014 Mar 01; 6(1):015006. PubMed ID: 24429776
    [Abstract] [Full Text] [Related]

  • 13. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.
    Ergun C, Liu H, Webster TJ.
    J Biomed Mater Res A; 2009 Jun 01; 89(3):727-33. PubMed ID: 18464257
    [Abstract] [Full Text] [Related]

  • 14. Synthesis and characterization of sintered beta-tricalcium phosphate: A comparative study on the effect of preparation route.
    Ghosh R, Sarkar R.
    Mater Sci Eng C Mater Biol Appl; 2016 Oct 01; 67():345-352. PubMed ID: 27287130
    [Abstract] [Full Text] [Related]

  • 15. Characterization and bioactivity of tape-cast and sintered TCP sheets.
    Tanimoto Y, Hayakawa T, Sakae T, Nemoto K.
    J Biomed Mater Res A; 2006 Mar 01; 76(3):571-9. PubMed ID: 16278874
    [Abstract] [Full Text] [Related]

  • 16. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A, Moreno-Vicente C, Ramos V, Aranaz I, Sanz Casado JV, López-Lacomba JL.
    Tissue Eng Part A; 2008 Aug 01; 14(8):1305-19. PubMed ID: 18491953
    [Abstract] [Full Text] [Related]

  • 17. Osteoblast-like cell proliferation on tape-cast and sintered tricalcium phosphate sheets.
    Tanimoto Y, Shibata Y, Kataoka Y, Miyazaki T, Nishiyama N.
    Acta Biomater; 2008 Mar 01; 4(2):397-402. PubMed ID: 18054299
    [Abstract] [Full Text] [Related]

  • 18. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.
    Sriranganathan D, Kanwal N, Hing KA, Hill RG.
    J Mater Sci Mater Med; 2016 Feb 01; 27(2):39. PubMed ID: 26704556
    [Abstract] [Full Text] [Related]

  • 19. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S.
    J Tissue Eng Regen Med; 2013 Aug 01; 7(8):631-41. PubMed ID: 22396130
    [Abstract] [Full Text] [Related]

  • 20. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate.
    Reid JW, Tuck L, Sayer M, Fargo K, Hendry JA.
    Biomaterials; 2006 May 01; 27(15):2916-25. PubMed ID: 16448694
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.