These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Ye D, Luo L, Ding Y, Liu B, Liu X. Analyst; 2012 Jun 21; 137(12):2840-5. PubMed ID: 22567661 [Abstract] [Full Text] [Related]
3. Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins. Li S, Aphale AN, Macwan IG, Patra PK, Gonzalez WG, Miksovska J, Leblanc RM. ACS Appl Mater Interfaces; 2012 Dec 21; 4(12):7069-75. PubMed ID: 23173615 [Abstract] [Full Text] [Related]
4. Effect of GO nanosheets on spectrophotometric determination of tyrosine in urine and serum using nitrosonaphthol. Nassef HM, Hagar M, Othman AM. Anal Biochem; 2018 Oct 01; 558():12-18. PubMed ID: 30076789 [Abstract] [Full Text] [Related]
5. Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine. Deng KQ, Zhou JH, Li XF. Colloids Surf B Biointerfaces; 2013 Jan 01; 101():183-8. PubMed ID: 22796789 [Abstract] [Full Text] [Related]
6. Determination of free tryptophan in serum with aptamer--comparison of two aptasensors. Yang X, Han Q, Zhang Y, Wu J, Tang X, Dong C, Liu W. Talanta; 2015 Jan 01; 131():672-7. PubMed ID: 25281158 [Abstract] [Full Text] [Related]
7. An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid. Han J, Wang Q, Zhai J, Han L, Dong S. Analyst; 2015 Aug 07; 140(15):5295-300. PubMed ID: 26065906 [Abstract] [Full Text] [Related]
9. A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode. Özcan A, Şahin Y. Biosens Bioelectron; 2012 Jan 15; 31(1):26-31. PubMed ID: 22071091 [Abstract] [Full Text] [Related]
14. Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Park JS, Na HK, Min DH, Kim DE. Analyst; 2013 Mar 21; 138(6):1745-9. PubMed ID: 23361154 [Abstract] [Full Text] [Related]
16. Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles. Adhikari B, Biswas A, Banerjee A. Langmuir; 2012 Jan 17; 28(2):1460-9. PubMed ID: 22133019 [Abstract] [Full Text] [Related]
17. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Tang X, Liu Y, Hou H, You T. Talanta; 2010 Mar 15; 80(5):2182-6. PubMed ID: 20152470 [Abstract] [Full Text] [Related]
18. Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement. Joshi S, Ghosh I, Pokhrel S, Mädler L, Nau WM. ACS Nano; 2012 Jun 26; 6(6):5668-79. PubMed ID: 22591378 [Abstract] [Full Text] [Related]
19. Catalytic reduction of graphene oxide nanosheets by glutathione peroxidase mimetics reveals a new structural motif in graphene oxide. Vernekar AA, Mugesh G. Chemistry; 2013 Dec 02; 19(49):16699-706. PubMed ID: 24281813 [Abstract] [Full Text] [Related]
20. Optical turn-on sensor based on graphene oxide for selective detection of D-glucosamine. Cheng R, Liu Y, Ou S, Pan Y, Zhang S, Chen H, Dai L, Qu J. Anal Chem; 2012 Jul 03; 84(13):5641-4. PubMed ID: 22655914 [Abstract] [Full Text] [Related] Page: [Next] [New Search]