These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 23835157
1. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Despotovic D, Vojcic L, Blanusa M, Maurer KH, Zacharias M, Bocola M, Martinez R, Schwaneberg U. J Biotechnol; 2013 Sep 10; 167(3):279-86. PubMed ID: 23835157 [Abstract] [Full Text] [Related]
2. Reengineering of subtilisin Carlsberg for oxidative resistance. Vojcic L, Despotovic D, Maurer KH, Zacharias M, Bocola M, Martinez R, Schwaneberg U. Biol Chem; 2013 Jan 10; 394(1):79-87. PubMed ID: 23096572 [Abstract] [Full Text] [Related]
3. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Mei HC, Liaw YC, Li YC, Wang DC, Takagi H, Tsai YC. Protein Eng; 1998 Feb 10; 11(2):109-17. PubMed ID: 9605545 [Abstract] [Full Text] [Related]
4. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Ballinger MD, Tom J, Wells JA. Biochemistry; 1996 Oct 22; 35(42):13579-85. PubMed ID: 8885837 [Abstract] [Full Text] [Related]
5. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability. Fuchita N, Arita S, Ikuta J, Miura M, Shimomura K, Motoshima H, Watanabe K. Biochim Biophys Acta; 2012 Apr 22; 1824(4):620-6. PubMed ID: 22326746 [Abstract] [Full Text] [Related]
6. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Zheng ZL, Ye MQ, Zuo ZY, Liu ZG, Tai KC, Zou GL. Biochem J; 2006 May 01; 395(3):509-15. PubMed ID: 16411898 [Abstract] [Full Text] [Related]
7. Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg. Mugford PF, Lait SM, Keay BA, Kazlauskas RJ. Chembiochem; 2004 Jul 05; 5(7):980-7. PubMed ID: 15239056 [Abstract] [Full Text] [Related]
8. Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg. Eschenburg S, Genov N, Peters K, Fittkau S, Stoeva S, Wilson KS, Betzel C. Eur J Biochem; 1998 Oct 15; 257(2):309-18. PubMed ID: 9826175 [Abstract] [Full Text] [Related]
9. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity limitations. DeSantis G, Shang X, Jones JB. Biochemistry; 1999 Oct 05; 38(40):13391-7. PubMed ID: 10529215 [Abstract] [Full Text] [Related]
10. N-anthraniloyl-Ala-Ala-Phe-4-nitroanilide, a highly sensitive substrate for subtilisins. Stambolieva NA, Ivanov IP, Yomtova VM. Arch Biochem Biophys; 1992 May 01; 294(2):703-6. PubMed ID: 1567226 [Abstract] [Full Text] [Related]
11. Kinetic studies of the inhibitory effects of propeptides subtilisin BPN' and Carlsberg to bacterial serine proteases. Huang HW, Chen WC, Wu CY, Yu HC, Lin WY, Chen ST, Wang KT. Protein Eng; 1997 Oct 01; 10(10):1227-33. PubMed ID: 9488148 [Abstract] [Full Text] [Related]
12. Engineering a substrate-specific cold-adapted subtilisin. Tindbaek N, Svendsen A, Oestergaard PR, Draborg H. Protein Eng Des Sel; 2004 Feb 01; 17(2):149-56. PubMed ID: 15047911 [Abstract] [Full Text] [Related]
13. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. You L, Arnold FH. Protein Eng; 1996 Jan 01; 9(1):77-83. PubMed ID: 9053906 [Abstract] [Full Text] [Related]
14. The interaction of the fluorescent probe 1-anilinonaphthalene-8-sulfonate with Carlsberg subtilisin. Karasaki Y, Ohno M. J Biochem; 1980 Apr 01; 87(4):1235-41. PubMed ID: 6993456 [Abstract] [Full Text] [Related]
15. A novel engineered subtilisin BPN' lacking a low-barrier hydrogen bond in the catalytic triad. Stratton JR, Pelton JG, Kirsch JF. Biochemistry; 2001 Sep 04; 40(35):10411-6. PubMed ID: 11523982 [Abstract] [Full Text] [Related]
18. Investigating the s-2 subsite selectivity of alkaline proteases in hydrolysis of diastereo-peptide esters and molecular-modeling interpretation. Chen ST, Tu CC, Chen SY, Huang HC, Wang KT. Bioorg Med Chem; 1993 Nov 24; 1(5):361-7. PubMed ID: 8081866 [Abstract] [Full Text] [Related]