These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1068 related items for PubMed ID: 23841453
1. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies. Fox SJ, Pittock C, Tautermann CS, Fox T, Christ C, Malcolm NO, Essex JW, Skylaris CK. J Phys Chem B; 2013 Aug 15; 117(32):9478-85. PubMed ID: 23841453 [Abstract] [Full Text] [Related]
2. A simple QM/MM approach for capturing polarization effects in protein-ligand binding free energy calculations. Beierlein FR, Michel J, Essex JW. J Phys Chem B; 2011 May 05; 115(17):4911-26. PubMed ID: 21476567 [Abstract] [Full Text] [Related]
3. Hybrid density functional-molecular mechanics calculations for core-electron binding energies of glycine in water solution. Niskanen J, Arul Murugan N, Rinkevicius Z, Vahtras O, Li C, Monti S, Carravetta V, Agren H. Phys Chem Chem Phys; 2013 Jan 07; 15(1):244-54. PubMed ID: 23160171 [Abstract] [Full Text] [Related]
4. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z, Yang W. J Chem Phys; 2004 Jul 01; 121(1):89-100. PubMed ID: 15260525 [Abstract] [Full Text] [Related]
5. A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration. Sampson C, Fox T, Tautermann CS, Woods C, Skylaris CK. J Phys Chem B; 2015 Jun 11; 119(23):7030-40. PubMed ID: 25985723 [Abstract] [Full Text] [Related]
6. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method. König G, Mei Y, Pickard FC, Simmonett AC, Miller BT, Herbert JM, Woodcock HL, Brooks BR, Shao Y. J Chem Theory Comput; 2016 Jan 12; 12(1):332-44. PubMed ID: 26613419 [Abstract] [Full Text] [Related]
7. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Fox SJ, Dziedzic J, Fox T, Tautermann CS, Skylaris CK. Proteins; 2014 Dec 12; 82(12):3335-46. PubMed ID: 25212393 [Abstract] [Full Text] [Related]
8. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. Fox SJ, Pittock C, Fox T, Tautermann CS, Malcolm N, Skylaris CK. J Chem Phys; 2011 Dec 14; 135(22):224107. PubMed ID: 22168680 [Abstract] [Full Text] [Related]
9. Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations. Maurer P, Iftimie R. J Chem Phys; 2010 Feb 21; 132(7):074112. PubMed ID: 20170220 [Abstract] [Full Text] [Related]
10. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL, Dumont E, Chodera JD, Dill KA. J Phys Chem B; 2007 Mar 08; 111(9):2242-54. PubMed ID: 17291029 [Abstract] [Full Text] [Related]
11. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Monari A, Rivail JL, Assfeld X. Acc Chem Res; 2013 Feb 19; 46(2):596-603. PubMed ID: 23249409 [Abstract] [Full Text] [Related]
12. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent. Nakano H, Yamamoto T. J Chem Phys; 2012 Apr 07; 136(13):134107. PubMed ID: 22482540 [Abstract] [Full Text] [Related]
13. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY, Chu ZT, Tao H, Warshel A. Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821 [Abstract] [Full Text] [Related]
14. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation. Takahashi H, Ohno H, Kishi R, Nakano M, Matubayasi N. J Chem Phys; 2008 Nov 28; 129(20):205103. PubMed ID: 19045881 [Abstract] [Full Text] [Related]
15. Use of a QM/MM-based FEP method to evaluate the anomalous hydration behavior of simple alkyl amines and amides: application to the design of FBPase inhibitors for the treatment of type-2 diabetes. Reddy MR, Singh UC, Erion MD. J Am Chem Soc; 2011 Jun 01; 133(21):8059-61. PubMed ID: 21545145 [Abstract] [Full Text] [Related]
16. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H, Lu Z, Parks JM, Burger SK, Yang W. J Chem Phys; 2008 Jan 21; 128(3):034105. PubMed ID: 18205486 [Abstract] [Full Text] [Related]
17. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Ryde U, Söderhjelm P. Chem Rev; 2016 May 11; 116(9):5520-66. PubMed ID: 27077817 [Abstract] [Full Text] [Related]
18. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions. Löytynoja T, Niskanen J, Jänkälä K, Vahtras O, Rinkevicius Z, Ågren H. J Phys Chem B; 2014 Nov 20; 118(46):13217-25. PubMed ID: 25340948 [Abstract] [Full Text] [Related]
19. Binding affinities by alchemical perturbation using QM/MM with a large QM system and polarizable MM model. Genheden S, Ryde U, Söderhjelm P. J Comput Chem; 2015 Oct 30; 36(28):2114-24. PubMed ID: 26280564 [Abstract] [Full Text] [Related]
20. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J. J Phys Condens Matter; 2008 Feb 13; 20(6):060301. PubMed ID: 21693862 [Abstract] [Full Text] [Related] Page: [Next] [New Search]