These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
332 related items for PubMed ID: 23842248
1. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure. Wen Y, Ma W, Bailey J, Matmon G, Yu X, Aeppli G. Appl Opt; 2013 Jul 01; 52(19):4536-40. PubMed ID: 23842248 [Abstract] [Full Text] [Related]
2. A terahertz polarization insensitive dual band metamaterial absorber. Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DR. Opt Lett; 2011 Mar 15; 36(6):945-7. PubMed ID: 21403737 [Abstract] [Full Text] [Related]
3. Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies. Wen Y, Ma W, Bailey J, Matmon G, Yu X, Aeppli G. Opt Lett; 2014 Mar 15; 39(6):1589-92. PubMed ID: 24690845 [Abstract] [Full Text] [Related]
4. Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber. Chen X, Fan W. Appl Opt; 2015 Mar 20; 54(9):2376-82. PubMed ID: 25968524 [Abstract] [Full Text] [Related]
10. All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range. Xu Z, Li Y, Han B, Wang Y, Yuan Q, Li Y, He W, Hao J, Wu L, Yao J. Materials (Basel); 2024 Apr 29; 17(9):. PubMed ID: 38730908 [Abstract] [Full Text] [Related]
13. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance. Lai R, Chen H, Zhou Z, Yi Z, Tang B, Chen J, Yi Y, Tang C, Zhang J, Sun T. Micromachines (Basel); 2023 Sep 21; 14(9):. PubMed ID: 37763965 [Abstract] [Full Text] [Related]
14. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Wright D, Rajalingam B, Selvarasah S, Dokmeci MR, Khademhosseini A. Lab Chip; 2007 Oct 21; 7(10):1272-9. PubMed ID: 17896010 [Abstract] [Full Text] [Related]
15. Dual-band terahertz absorber based on square ring metamaterial structure. Wang D, Xu KD, Luo S, Cui Y, Zhang L, Liao Z, Cui J. Opt Express; 2023 Feb 13; 31(4):5940-5950. PubMed ID: 36823863 [Abstract] [Full Text] [Related]
16. A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Wang D, Xu KD, Luo S, Cui Y, Zhang L, Cui J. Nanoscale; 2023 Feb 16; 15(7):3398-3407. PubMed ID: 36722909 [Abstract] [Full Text] [Related]
17. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Jin B, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, Cao C, Chen J, Xu W, Kang L, Wu P. Opt Express; 2010 Aug 02; 18(16):17504-9. PubMed ID: 20721135 [Abstract] [Full Text] [Related]
18. Lattice modes mediate radiative coupling in metamaterial arrays. Bitzer A, Wallauer J, Helm H, Merbold H, Feurer T, Walther M. Opt Express; 2009 Nov 23; 17(24):22108-13. PubMed ID: 19997457 [Abstract] [Full Text] [Related]
20. Tunable terahertz metamaterial absorber based on Dirac semimetal films. Wang T, Cao M, Zhang H, Zhang Y. Appl Opt; 2018 Nov 10; 57(32):9555-9561. PubMed ID: 30461735 [Abstract] [Full Text] [Related] Page: [Next] [New Search]