These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 23849753

  • 1. Current EU-27 technical potential of organic waste streams for biogas and energy production.
    Lorenz H, Fischer P, Schumacher B, Adler P.
    Waste Manag; 2013 Nov; 33(11):2434-48. PubMed ID: 23849753
    [Abstract] [Full Text] [Related]

  • 2. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.
    Trulli E, Torretta V.
    Environ Technol; 2015 Nov; 36(9-12):1519-28. PubMed ID: 25442095
    [Abstract] [Full Text] [Related]

  • 3. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A, Galatola M.
    Water Sci Technol; 2008 Nov; 57(11):1683-92. PubMed ID: 18547917
    [Abstract] [Full Text] [Related]

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS, Dhagat NN.
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [Abstract] [Full Text] [Related]

  • 5. Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge.
    Hagelqvist A.
    Waste Manag; 2013 Apr; 33(4):820-4. PubMed ID: 23294534
    [Abstract] [Full Text] [Related]

  • 6. Food industry waste - An opportunity for black soldier fly larvae protein production in Tanzania.
    Isibika A, Simha P, Vinnerås B, Zurbrügg C, Kibazohi O, Lalander C.
    Sci Total Environ; 2023 Feb 01; 858(Pt 3):159985. PubMed ID: 36368404
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production.
    Nayono SE, Gallert C, Winter J.
    Bioresour Technol; 2010 Sep 01; 101(18):6998-7004. PubMed ID: 20400298
    [Abstract] [Full Text] [Related]

  • 9. Anaerobic treatability and biogas production potential of selected in-mill streams.
    Yang MI, Edwards EA, Allen DG.
    Water Sci Technol; 2010 Sep 01; 62(10):2427-34. PubMed ID: 21076230
    [Abstract] [Full Text] [Related]

  • 10. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W.
    Crit Rev Biotechnol; 2012 Jun 01; 32(2):172-86. PubMed ID: 21851320
    [Abstract] [Full Text] [Related]

  • 11. Biogas production from co-digestion of dairy manure and food waste.
    El-Mashad HM, Zhang R.
    Bioresour Technol; 2010 Jun 01; 101(11):4021-8. PubMed ID: 20137909
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A life cycle approach to the management of household food waste - A Swedish full-scale case study.
    Bernstad A, la Cour Jansen J.
    Waste Manag; 2011 Aug 01; 31(8):1879-96. PubMed ID: 21511455
    [Abstract] [Full Text] [Related]

  • 15. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.
    Nasrullah M, Vainikka P, Hannula J, Hurme M, Kärki J.
    Waste Manag; 2014 Aug 01; 34(8):1398-407. PubMed ID: 24735992
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T, Astrup T.
    Waste Manag; 2011 Mar 01; 31(3):572-82. PubMed ID: 20937557
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.