These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 2385601

  • 1. Simulation of shape changes and adhesion phenomena in an elastic model of erythrocytes.
    Leibler S, Maggs AC.
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6433-5. PubMed ID: 2385601
    [Abstract] [Full Text] [Related]

  • 2. Equilibrium shapes of erythrocytes in rouleau formation.
    Derganc J, Bozic B, Svetina S, Zeks B.
    Biophys J; 2003 Mar; 84(3):1486-92. PubMed ID: 12609855
    [Abstract] [Full Text] [Related]

  • 3. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B.
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [Abstract] [Full Text] [Related]

  • 4. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K, Engelhard H, Sackmann E.
    Eur Biophys J; 1990 May; 18(4):203-19. PubMed ID: 2364914
    [Abstract] [Full Text] [Related]

  • 5. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K, Wada S, Liu H.
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [Abstract] [Full Text] [Related]

  • 6. Shape and elasticity effects on erythrocyte electrostatic repulsion.
    Papadopoulos KD, Yato A, Nguyen H.
    J Theor Biol; 1985 Apr 07; 113(3):545-57. PubMed ID: 3999785
    [Abstract] [Full Text] [Related]

  • 7. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells.
    Evans EA.
    Biophys J; 1980 May 07; 30(2):265-84. PubMed ID: 7260275
    [Abstract] [Full Text] [Related]

  • 8. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness.
    Haest CW, Fischer TM, Plasa G, Deuticke B.
    Blood Cells; 1980 May 07; 6(3):539-53. PubMed ID: 7397401
    [Abstract] [Full Text] [Related]

  • 9. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A, Kralj-Iglic V, Hägerstrand H.
    Eur Biophys J; 1998 May 07; 27(4):335-9. PubMed ID: 9691462
    [Abstract] [Full Text] [Related]

  • 10. A possible mechanism determining the stability of spiculated red blood cells.
    Iglic A.
    J Biomech; 1997 Jan 07; 30(1):35-40. PubMed ID: 8970922
    [Abstract] [Full Text] [Related]

  • 11. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping.
    Dasanna AK, Fedosov DA, Gompper G, Schwarz US.
    Soft Matter; 2019 Jul 10; 15(27):5511-5520. PubMed ID: 31241632
    [Abstract] [Full Text] [Related]

  • 12. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M, Vrhovec S, Brumen M, Svetina S, Zeks B.
    Gen Physiol Biophys; 1996 Apr 10; 15(2):145-63. PubMed ID: 8899418
    [Abstract] [Full Text] [Related]

  • 13. Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton.
    Levin S, Korenstein R.
    Biophys J; 1991 Sep 10; 60(3):733-7. PubMed ID: 1932557
    [Abstract] [Full Text] [Related]

  • 14. Elastic properties of the erythrocyte membrane and the critical cell volume of erythrocytes.
    Mosior M.
    Biochim Biophys Acta; 1988 Dec 22; 946(2):429-30. PubMed ID: 3207757
    [Abstract] [Full Text] [Related]

  • 15. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D, Evans E.
    Biophys J; 1991 Apr 22; 59(4):861-72. PubMed ID: 2065190
    [Abstract] [Full Text] [Related]

  • 16. Hydrodynamics of confined membranes.
    Gov N, Zilman AG, Safran S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul 22; 70(1 Pt 1):011104. PubMed ID: 15324039
    [Abstract] [Full Text] [Related]

  • 17. Erythrocyte shape simulation by numerical optimization.
    Grebe R, Zuckermann MJ.
    Biorheology; 1990 Jul 22; 27(5):735-46. PubMed ID: 2271764
    [Abstract] [Full Text] [Related]

  • 18. Shape memory of human red blood cells.
    Fischer TM.
    Biophys J; 2004 May 22; 86(5):3304-13. PubMed ID: 15111443
    [Abstract] [Full Text] [Related]

  • 19. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ, Bagchi P.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug 22; 84(2 Pt 2):026314. PubMed ID: 21929097
    [Abstract] [Full Text] [Related]

  • 20. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J, Mendez S, Lanotte L, Nicoud F, Abkarian M, Gompper G, Fedosov DA.
    Phys Rev Lett; 2018 Sep 14; 121(11):118103. PubMed ID: 30265089
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.