These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 23860829
1. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Biotechnol Bioeng; 2014 Jan; 111(1):125-33. PubMed ID: 23860829 [Abstract] [Full Text] [Related]
2. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. FEMS Yeast Res; 2021 Jan 16; 21(1):. PubMed ID: 33332529 [Abstract] [Full Text] [Related]
3. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Lange N, Steinbüchel A. Appl Microbiol Biotechnol; 2011 Sep 16; 91(6):1611-22. PubMed ID: 21573686 [Abstract] [Full Text] [Related]
4. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, Wang L, Shen Y, Luo Y, Zheng Y, Lin J, Chen GQ, Wu Q, Cai Y, Dai J. Nucleic Acids Res; 2015 Jul 27; 43(13):e88. PubMed ID: 25956650 [Abstract] [Full Text] [Related]
9. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Zhou P, Xie W, Li A, Wang F, Yao Z, Bian Q, Zhu Y, Yu H, Ye L. Enzyme Microb Technol; 2017 May 27; 100():28-36. PubMed ID: 28284309 [Abstract] [Full Text] [Related]
12. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Sun L, Atkinson CA, Lee YG, Jin YS. Biotechnol Bioeng; 2020 Nov 27; 117(11):3522-3532. PubMed ID: 33616900 [Abstract] [Full Text] [Related]
13. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Zhou P, Ye L, Xie W, Lv X, Yu H. Appl Microbiol Biotechnol; 2015 Oct 27; 99(20):8419-28. PubMed ID: 26156241 [Abstract] [Full Text] [Related]
14. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ. Appl Environ Microbiol; 2007 Jul 27; 73(13):4342-50. PubMed ID: 17496128 [Abstract] [Full Text] [Related]
17. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J. Bioresour Technol; 2014 Mar 27; 156():232-9. PubMed ID: 24508660 [Abstract] [Full Text] [Related]
18. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N. Biosci Biotechnol Biochem; 1994 Jun 27; 58(6):1112-4. PubMed ID: 7765036 [Abstract] [Full Text] [Related]