These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1195 related items for PubMed ID: 23860860

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.
    Yu HY, Huang KC, Yip BS, Tu CH, Chen HL, Cheng HT, Cheng JW.
    Chembiochem; 2010 Nov 02; 11(16):2273-82. PubMed ID: 20865718
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity.
    Wei SY, Wu JM, Kuo YY, Chen HL, Yip BS, Tzeng SR, Cheng JW.
    J Bacteriol; 2006 Jan 02; 188(1):328-34. PubMed ID: 16352849
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Salt-resistant short antimicrobial peptides.
    Mohanram H, Bhattacharjya S.
    Biopolymers; 2016 May 02; 106(3):345-56. PubMed ID: 26849911
    [Abstract] [Full Text] [Related]

  • 10. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M, Hoffarth ER, Ishida H, Aramini JM, Vogel HJ.
    Biochim Biophys Acta; 2016 May 02; 1858(5):1012-23. PubMed ID: 26724205
    [Abstract] [Full Text] [Related]

  • 11. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA, Baroni MC, Taddei S, Ghidini F, Sansoni P, Cavirani S, Cabassi CS.
    J Pept Sci; 2013 Sep 02; 19(9):554-65. PubMed ID: 23893489
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity.
    Bagheri M, Amininasab M, Dathe M.
    Chemistry; 2018 Sep 20; 24(53):14242-14253. PubMed ID: 29969522
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Influence of the Multivalency of Ultrashort Arg-Trp-Based Antimicrobial Peptides (AMP) on Their Antibacterial Activity.
    Hoffknecht BC, Worm DJ, Bobersky S, Prochnow P, Bandow JE, Metzler-Nolte N.
    ChemMedChem; 2015 Sep 20; 10(9):1564-9. PubMed ID: 26149664
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy.
    Park K, Oh D, Shin SY, Hahm KS, Kim Y.
    Biochem Biophys Res Commun; 2002 Jan 11; 290(1):204-12. PubMed ID: 11779154
    [Abstract] [Full Text] [Related]

  • 20. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M, Schriek P, Prochnow P, Albada HB, Metzler-Nolte N, Bandow JE.
    Biochim Biophys Acta; 2016 May 11; 1858(5):1004-11. PubMed ID: 26603779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 60.