These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 23861930
1. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments. Aihara I, Fujioka E, Hiryu S. PLoS One; 2013; 8(7):e68635. PubMed ID: 23861930 [Abstract] [Full Text] [Related]
2. Echolocating bats use future-target information for optimal foraging. Fujioka E, Aihara I, Sumiya M, Aihara K, Hiryu S. Proc Natl Acad Sci U S A; 2016 Apr 26; 113(17):4848-52. PubMed ID: 27071082 [Abstract] [Full Text] [Related]
3. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit. Vanderelst D, Peremans H. J Theor Biol; 2018 Nov 07; 456():305-314. PubMed ID: 30102889 [Abstract] [Full Text] [Related]
4. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging. Sumiya M, Fujioka E, Motoi K, Kondo M, Hiryu S. PLoS One; 2017 Nov 07; 12(1):e0169995. PubMed ID: 28085936 [Abstract] [Full Text] [Related]
5. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey. Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct 07; 198(10):741-51. PubMed ID: 22777677 [Abstract] [Full Text] [Related]
6. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task. Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep 07; 200(9):799-809. PubMed ID: 24958227 [Abstract] [Full Text] [Related]
7. Echolocating bats use a nearly time-optimal strategy to intercept prey. Ghose K, Horiuchi TK, Krishnaprasad PS, Moss CF. PLoS Biol; 2006 May 07; 4(5):e108. PubMed ID: 16605303 [Abstract] [Full Text] [Related]
8. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight. Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y. J Exp Biol; 2013 Apr 01; 216(Pt 7):1210-8. PubMed ID: 23487269 [Abstract] [Full Text] [Related]
9. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus. Chiu C, Reddy PV, Xian W, Krishnaprasad PS, Moss CF. J Exp Biol; 2010 Oct 01; 213(Pt 19):3348-56. PubMed ID: 20833928 [Abstract] [Full Text] [Related]
10. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability. Stidsholt L, Hubancheva A, Greif S, Goerlitz HR, Johnson M, Yovel Y, Madsen PT. Elife; 2023 Apr 18; 12():. PubMed ID: 37070239 [Abstract] [Full Text] [Related]
18. Behavioral responses of big brown bats to dives by praying mantises. Ghose K, Triblehorn JD, Bohn K, Yager DD, Moss CF. J Exp Biol; 2009 Mar 15; 212(Pt 5):693-703. PubMed ID: 19218521 [Abstract] [Full Text] [Related]
19. Vision complements echolocation in an aerial-hawking bat. Rydell J, Eklöf J. Naturwissenschaften; 2003 Oct 15; 90(10):481-3. PubMed ID: 14564410 [Abstract] [Full Text] [Related]
20. Mysterious Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. Jones G, Webb PI, Sedgeley JA, O'Donnell CF. J Exp Biol; 2003 Dec 15; 206(Pt 23):4209-16. PubMed ID: 14581591 [Abstract] [Full Text] [Related] Page: [Next] [New Search]