These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 23863522
21. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation. Grayev A, Shimakawa A, Cousins J, Turski P, Brittain J, Reeder S. J Magn Reson Imaging; 2009 Jun; 29(6):1367-74. PubMed ID: 19472410 [Abstract] [Full Text] [Related]
22. Time-resolved MR angiography of renal artery stenosis in a swine model at 3 Tesla using gadobutrol with digital subtraction angiography correlation. Morelli JN, Ai F, Runge VM, Zhang W, Li X, Schmitt P, McNeal G, Michaely HJ, Schoenberg SO, Miller M, Gerdes CM, Sincleair ST, Spratt H, Attenberger UI. J Magn Reson Imaging; 2012 Sep; 36(3):704-13. PubMed ID: 22645046 [Abstract] [Full Text] [Related]
23. Contrast-enhanced magnetic resonance angiography of the lower extremities: standard-dose vs. high-dose gadodiamide injection. Krause U, Kroencke T, Spielhaupter E, Taupitz M, Kenn W, Hamm B, Hahn D. J Magn Reson Imaging; 2005 Apr; 21(4):449-54. PubMed ID: 15778953 [Abstract] [Full Text] [Related]
24. Improving the image quality of contrast-enhanced MR angiography by automated image registration: a prospective study in peripheral arterial disease of the lower extremities. Menke J. Eur J Radiol; 2010 Sep; 75(3):e1-8. PubMed ID: 19656648 [Abstract] [Full Text] [Related]
25. Hybrid of opposite-contrast MRA of the brain by combining time-of-flight and black-blood sequences: initial experience in major trunk stenoocclusive diseases. Tsuchiya K, Kobayashi K, Nitatori T, Kimura T, Ikedo M, Takemoto S. J Magn Reson Imaging; 2010 Jan; 31(1):56-60. PubMed ID: 20027573 [Abstract] [Full Text] [Related]
26. Stenosis detection in failing hemodialysis access fistulas and grafts: comparison of color Doppler ultrasonography, contrast-enhanced magnetic resonance angiography, and digital subtraction angiography. Doelman C, Duijm LE, Liem YS, Froger CL, Tielbeek AV, Donkers-van Rossum AB, Cuypers PW, Douwes-Draaijer P, Buth J, van den Bosch HC. J Vasc Surg; 2005 Oct; 42(4):739-46. PubMed ID: 16242563 [Abstract] [Full Text] [Related]
27. Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography. Shahzad R, Younas F. J Coll Physicians Surg Pak; 2011 Jun; 21(6):325-9. PubMed ID: 21711985 [Abstract] [Full Text] [Related]
28. Assessment of 3D-TOF-MRA at 3.0 Tesla in the characterization of the angioarchitecture of cerebral arteriovenous malformations: a preliminary study. Heidenreich JO, Schilling AM, Unterharnscheidt F, Stendel R, Hartlieb S, Wacker FK, Schlattmann P, Wolf KJ, Bruhn H. Acta Radiol; 2007 Jul; 48(6):678-86. PubMed ID: 17611878 [Abstract] [Full Text] [Related]
29. Follow-up of coiled cerebral aneurysms: comparison of three-dimensional time-of-flight magnetic resonance angiography at 3 tesla with three-dimensional time-of-flight magnetic resonance angiography and contrast-enhanced magnetic resonance angiography at 1.5 Tesla. Anzalone N, Scomazzoni F, Cirillo M, Cadioli M, Iadanza A, Kirchin MA, Scotti G. Invest Radiol; 2008 Aug; 43(8):559-67. PubMed ID: 18648255 [Abstract] [Full Text] [Related]
30. Three-dimensional imaging of pulmonary veins by a novel steady-state free-precession magnetic resonance angiography technique without the use of intravenous contrast agent: initial experience. Krishnam MS, Tomasian A, Malik S, Singhal A, Sassani A, Laub G, Finn JP, Ruehm S. Invest Radiol; 2009 Aug; 44(8):447-53. PubMed ID: 19561516 [Abstract] [Full Text] [Related]
31. Childhood primary angiitis of the central nervous system: identifying disease trajectories and early risk factors for persistently higher disease activity. Cellucci T, Tyrrell PN, Sheikh S, Benseler SM. Arthritis Rheum; 2012 May; 64(5):1665-72. PubMed ID: 22544528 [Abstract] [Full Text] [Related]
32. Azygous anterior cerebral artery and associated aneurysms: detection and identification using 3-dimensional time-of-flight magnetic resonance angiography. Wan-Yin S, Ming-Hua L, Bin-Xian G, Yong-Dong L, Hua-Qiao T. J Neuroimaging; 2014 May; 24(1):18-22. PubMed ID: 23163794 [Abstract] [Full Text] [Related]
33. Magnetic resonance angiography in a patient with Crohn's disease associated cerebral vasculitis. Schluter A, Krasnianski M, Krivokuca M, Spielmann RP, Neudecker S, Hirsch W. Clin Neurol Neurosurg; 2004 Mar; 106(2):110-3. PubMed ID: 15003300 [Abstract] [Full Text] [Related]
34. Diagnostic pitfalls in postinterventional intraarterial magnetic resonance angiography after recanalization of femoropopliteal arterial occlusions. Huegli RW, Aschwanden M, Kos S, Rasmus M, Jaeger K, Jacob AL, Bilecen D. Acta Radiol; 2008 Dec; 49(10):1129-36. PubMed ID: 19031180 [Abstract] [Full Text] [Related]
35. Hybrid of opposite-contrast MR angiography (HOP-MRA) combining time-of-flight and flow-sensitive black-blood contrasts. Kimura T, Ikedo M, Takemoto S. Magn Reson Med; 2009 Aug; 62(2):450-8. PubMed ID: 19526496 [Abstract] [Full Text] [Related]
36. [MR angiography in diagnosis of vasculitis and benign angiopathies of the central nervous system]. Schlüter A, Hirsch W, Jassoy A, Kornhuber M, Behrmann C, Keysser G, Spielmann RP. Rofo; 2001 Jun; 173(6):522-7. PubMed ID: 11471293 [Abstract] [Full Text] [Related]