These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
440 related items for PubMed ID: 23865173
41. Comparison of Diadegma insulare (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Hymenoptera: Braconidae) as biological control agents of Plutella xylostella (Lepidoptera: Plutellidae): field parasitism, insecticide susceptibility, and host-searching. Xu J, Shelton AM, Cheng X. J Econ Entomol; 2001 Feb; 94(1):14-20. PubMed ID: 11233104 [Abstract] [Full Text] [Related]
42. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Zhu X, Yang Y, Wu Q, Wang S, Xie W, Guo Z, Kang S, Xia J, Zhang Y. Pest Manag Sci; 2016 Feb; 72(2):289-97. PubMed ID: 25684167 [Abstract] [Full Text] [Related]
43. Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes. Gassmann AJ, Fabrick JA, Sisterson MS, Hannon ER, Stock SP, Carrière Y, Tabashnik BE. J Econ Entomol; 2009 Jun; 102(3):1224-32. PubMed ID: 19610442 [Abstract] [Full Text] [Related]
44. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella). Yi X, Ehlers RU. Commun Agric Appl Biol Sci; 2006 Jun; 71(3 Pt A):633-6. PubMed ID: 17390802 [Abstract] [Full Text] [Related]
45. Effect of insecticides on the diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Hill TA, Foster RE. J Econ Entomol; 2000 Jun; 93(3):763-8. PubMed ID: 10902328 [Abstract] [Full Text] [Related]
46. Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. Tabashnik BE, Gould F, Carrière Y. J Evol Biol; 2004 Jul; 17(4):904-12; discussion 913-8. PubMed ID: 15271091 [Abstract] [Full Text] [Related]
47. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.). Xia J, Guo Z, Yang Z, Zhu X, Kang S, Yang X, Yang F, Wu Q, Wang S, Xie W, Xu W, Zhang Y. Pestic Biochem Physiol; 2016 Sep; 132():108-17. PubMed ID: 27521921 [Abstract] [Full Text] [Related]
48. Assessing the Single and Combined Toxicity of Chlorantraniliprole and Bacillus thuringiensis (GO33A) against Four Selected Strains of Plutella xylostella (Lepidoptera: Plutellidae), and a Gene Expression Analysis. Shabbir MZ, He L, Shu C, Yin F, Zhang J, Li ZY. Toxins (Basel); 2021 Mar 22; 13(3):. PubMed ID: 33809820 [Abstract] [Full Text] [Related]
49. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Zago HB, Siqueira HÁ, Pereira EJ, Picanço MC, Barros R. Pest Manag Sci; 2014 Mar 22; 70(3):488-95. PubMed ID: 23813721 [Abstract] [Full Text] [Related]
50. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ. Appl Environ Microbiol; 2004 Dec 22; 70(12):7010-7. PubMed ID: 15574894 [Abstract] [Full Text] [Related]
51. Can Pyramids and Seed Mixtures Delay Resistance to Bt Crops? Carrière Y, Fabrick JA, Tabashnik BE. Trends Biotechnol; 2016 Apr 22; 34(4):291-302. PubMed ID: 26774592 [Abstract] [Full Text] [Related]
52. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X, Zhang L, Peng Y, Chen S, Ding L, Tian Y, Li J, Wang H, Wang X, Xu G, Guo W, Yang Y, Wu Y, Heuberger S, Tabashnik BE, Zhang T, Zhu Z. Plant Biotechnol J; 2017 Sep 22; 15(9):1204-1213. PubMed ID: 28199783 [Abstract] [Full Text] [Related]
53. Field-evolved insect resistance to Bt crops: definition, theory, and data. Tabashnik BE, Van Rensburg JB, Carrière Y. J Econ Entomol; 2009 Dec 22; 102(6):2011-25. PubMed ID: 20069826 [Abstract] [Full Text] [Related]
54. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. Downes S, Mahon R, Olsen K. J Invertebr Pathol; 2007 Jul 22; 95(3):208-13. PubMed ID: 17470372 [Abstract] [Full Text] [Related]
55. Field-evolved resistance: assessing the problem and ways to move forward. Sumerford DV, Head GP, Shelton A, Greenplate J, Moar W. J Econ Entomol; 2013 Aug 22; 106(4):1525-34. PubMed ID: 24020262 [Abstract] [Full Text] [Related]
56. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae). Siegfried BD, Rangasamy M, Wang H, Spencer T, Haridas CV, Tenhumberg B, Sumerford DV, Storer NP. Pest Manag Sci; 2014 May 22; 70(5):725-33. PubMed ID: 24124030 [Abstract] [Full Text] [Related]
58. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Wang L, Ma Y, Wan P, Liu K, Xiao Y, Wang J, Cong S, Xu D, Wu K, Fabrick JA, Li X, Tabashnik BE. Insect Biochem Mol Biol; 2018 Mar 22; 94():28-35. PubMed ID: 29408651 [Abstract] [Full Text] [Related]
59. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP, Venugopal PD, Finkenbinder C. PLoS One; 2016 Mar 22; 11(12):e0169115. PubMed ID: 28036388 [Abstract] [Full Text] [Related]
60. Minimizing IP issues associated with gene constructs encoding the Bt toxin - a case study. Hassan MM, Tenazas F, Williams A, Chiu JW, Robin C, Russell DA, Golz JF. BMC Biotechnol; 2024 Jun 03; 24(1):37. PubMed ID: 38825715 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]