These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 23867095
1. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains. Kosugi S, Kiyoshi K, Oba T, Kusumoto K, Kadokura T, Nakazato A, Nakayama S. J Biosci Bioeng; 2014 Jan; 117(1):39-44. PubMed ID: 23867095 [Abstract] [Full Text] [Related]
2. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. Nakayama S, Tabata K, Oba T, Kusumoto K, Mitsuiki S, Kadokura T, Nakazato A. J Biosci Bioeng; 2012 Sep; 114(3):281-5. PubMed ID: 22575438 [Abstract] [Full Text] [Related]
3. Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates of Saccharomyces cerevisiae sake strains. Oba T, Kusumoto K, Kichise Y, Izumoto E, Nakayama S, Tashiro K, Kuhara S, Kitagaki H. FEMS Yeast Res; 2014 Aug; 14(5):789-96. PubMed ID: 24889034 [Abstract] [Full Text] [Related]
4. Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. Oba T, Suenaga H, Nakayama S, Mitsuiki S, Kitagaki H, Tashiro K, Kuhara S. Biosci Biotechnol Biochem; 2011 Aug; 75(10):2025-9. PubMed ID: 21979083 [Abstract] [Full Text] [Related]
5. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase. Pines O, Even-Ram S, Elnathan N, Battat E, Aharonov O, Gibson D, Goldberg I. Appl Microbiol Biotechnol; 1996 Nov; 46(4):393-9. PubMed ID: 8987728 [Abstract] [Full Text] [Related]
6. Use of Schizosaccharomyces strains for wine fermentation-Effect on the wine composition and food safety. Mylona AE, Del Fresno JM, Palomero F, Loira I, Bañuelos MA, Morata A, Calderón F, Benito S, Suárez-Lepe JA. Int J Food Microbiol; 2016 Sep 02; 232():63-72. PubMed ID: 27261767 [Abstract] [Full Text] [Related]
7. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration. Ohno Y, Nakamori T, Zheng H, Suye S. Biosci Biotechnol Biochem; 2008 May 02; 72(5):1278-82. PubMed ID: 18460807 [Abstract] [Full Text] [Related]
8. Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation. Kitagaki H. Biotechnol Appl Biochem; 2009 May 29; 53(Pt 3):145-53. PubMed ID: 19476438 [Abstract] [Full Text] [Related]
9. Specific Arabidopsis thaliana malic enzyme isoforms can provide anaplerotic pyruvate carboxylation function in Saccharomyces cerevisiae. Badia MB, Mans R, Lis AV, Tronconi MA, Arias CL, Maurino VG, Andreo CS, Drincovich MF, van Maris AJ, Gerrard Wheeler MC. FEBS J; 2017 Feb 29; 284(4):654-665. PubMed ID: 28075062 [Abstract] [Full Text] [Related]
10. Loss of NAD(H) from swollen yeast mitochondria. Bradshaw PC, Pfeiffer DR. BMC Biochem; 2006 Jan 24; 7():3. PubMed ID: 16433924 [Abstract] [Full Text] [Related]
11. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Šuranská H, Vránová D, Omelková J. Braz J Microbiol; 2016 Jan 24; 47(1):181-90. PubMed ID: 26887243 [Abstract] [Full Text] [Related]
12. Malo-ethanolic fermentation in Saccharomyces and Schizosaccharomyces. Volschenk H, van Vuuren HJ, Viljoen-Bloom M. Curr Genet; 2003 Sep 24; 43(6):379-91. PubMed ID: 12802505 [Abstract] [Full Text] [Related]
13. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. Cordente AG, Cordero-Bueso G, Pretorius IS, Curtin CD. FEMS Yeast Res; 2013 Feb 24; 13(1):62-73. PubMed ID: 23146134 [Abstract] [Full Text] [Related]
14. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. Sakihama Y, Hasunuma T, Kondo A. J Biosci Bioeng; 2015 Mar 24; 119(3):297-302. PubMed ID: 25282639 [Abstract] [Full Text] [Related]
15. Isolation of sake yeast strains from Ariake Sea tidal flats and evaluation of their brewing characteristics. Baba S, Sawada K, Orita R, Kimura K, Goto M, Kobayashi G. J Gen Appl Microbiol; 2022 Jun 20; 68(1):30-37. PubMed ID: 35431296 [Abstract] [Full Text] [Related]
16. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Jain VK, Divol B, Prior BA, Bauer FF. Appl Microbiol Biotechnol; 2012 Jan 20; 93(1):131-41. PubMed ID: 21720823 [Abstract] [Full Text] [Related]
18. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Volschenk H, Viljoen-Bloom M, Subden RE, van Vuuren HJ. Yeast; 2001 Jul 20; 18(10):963-70. PubMed ID: 11447602 [Abstract] [Full Text] [Related]
19. Breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl alpha-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport. Horie K, Oba T, Motomura S, Isogai A, Yoshimura T, Tsuge K, Koganemaru K, Kobayashi G, Kitagaki H. Biosci Biotechnol Biochem; 2010 Jul 20; 74(4):843-7. PubMed ID: 20445321 [Abstract] [Full Text] [Related]
20. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Li BZ, Yuan YJ. Appl Microbiol Biotechnol; 2010 May 20; 86(6):1915-24. PubMed ID: 20309542 [Abstract] [Full Text] [Related] Page: [Next] [New Search]