These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 2386823
1. [Study of the trajectory of erythrocyte movement in microvessels using a method of automatic image analysis]. Lominadze DG, Shinkarenko VS, Mamisashvili VA. Biull Eksp Biol Med; 1990 Apr; 109(4):343-4. PubMed ID: 2386823 [Abstract] [Full Text] [Related]
2. [Changes of blood flow structure in precapillary microvessels during significant slow-down of flow]. Lominadze DG, Mchedlishvili GI. Patol Fiziol Eksp Ter; 1991 Apr; (1):36-7. PubMed ID: 2057231 [Abstract] [Full Text] [Related]
3. Dynamic structure of blood flow in microvessels. Mchedlishvili G. Microcirc Endothelium Lymphatics; 1991 Apr; 7(1-3):3-49. PubMed ID: 1762608 [Abstract] [Full Text] [Related]
4. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation. Wu CC, Zhang G, Huang TC, Lin KP. Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002 [Abstract] [Full Text] [Related]
5. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods. Huang TC, Lin WC, Wu CC, Zhang G, Lin KP. Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483 [Abstract] [Full Text] [Related]
6. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Mchedlishvili G. Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669 [Abstract] [Full Text] [Related]
7. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data. Deneux T, Takerkart S, Grinvald A, Masson GS, Vanzetta I. Neuroimage; 2012 Feb 01; 59(3):2569-88. PubMed ID: 21925275 [Abstract] [Full Text] [Related]
8. [Cinematographic method of studying the structure of blood flow in microvessels]. Mamisashvili VA, Solov'ev BS, Levkovich IuI. Fiziol Zh SSSR Im I M Sechenova; 1982 Jun 01; 68(6):832-5. PubMed ID: 7117606 [No Abstract] [Full Text] [Related]
9. Automatic extraction and measurement of leukocyte motion in microvessels using spatiotemporal image analysis. Sato Y, Chen J, Zoroofi RA, Harada N, Tamura S, Shiga T. IEEE Trans Biomed Eng; 1997 Apr 01; 44(4):225-36. PubMed ID: 9125805 [Abstract] [Full Text] [Related]
10. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation. Hungerer S, Nolte D, Elstner B, Pröhl M, Messmer K. Artif Cells Blood Substit Immobil Biotechnol; 2010 May 01; 38(3):119-28. PubMed ID: 20297922 [Abstract] [Full Text] [Related]
11. Determination of erythrocyte flow velocity by dynamic grey scale measurement using off-line image analysis. Liu Y, Yang J, Sun K, Wang C, Han J, Liao F. Clin Hemorheol Microcirc; 2009 May 01; 43(3):265-7. PubMed ID: 19847062 [No Abstract] [Full Text] [Related]
12. [Changes in erythrocyte velocity in microvessels measured with a microprismatic grating]. Shinkarenko VS, Morozov SE. Biull Eksp Biol Med; 1984 Jan 01; 97(1):104-6. PubMed ID: 6692017 [Abstract] [Full Text] [Related]
13. Image-based vessel-by-vessel analysis for red blood cell and plasma dynamics with automatic segmentation. Kawaguchi H, Masamoto K, Ito H, Kanno I. Microvasc Res; 2012 Sep 01; 84(2):178-87. PubMed ID: 22588048 [Abstract] [Full Text] [Related]
14. Liver microcirculation analysis by red blood cell motion modeling in intravital microscopy images. Kamoun WS, Schmugge SJ, Kraftchick JP, Clemens MG, Shin MC. IEEE Trans Biomed Eng; 2008 Jan 01; 55(1):162-70. PubMed ID: 18232358 [Abstract] [Full Text] [Related]
15. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary. Ye T, Li H, Lam KY. Microvasc Res; 2010 Dec 01; 80(3):453-63. PubMed ID: 20643152 [Abstract] [Full Text] [Related]
16. Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation. Golster H, Lindén M, Bertuglia S, Colantuoni A, Nilsson G, Sjöberg F. Microvasc Res; 1999 Jul 01; 58(1):62-73. PubMed ID: 10388604 [Abstract] [Full Text] [Related]
17. Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system. Ishikawa M, Sekizuka E, Shimizu K, Yamaguchi N, Kawase T. Microvasc Res; 1998 Nov 01; 56(3):166-72. PubMed ID: 9828154 [Abstract] [Full Text] [Related]
18. [The effect of an increased erythrocyte count on rapid blood flow fluctuations in the microvessels of the rat brain]. Kisliakov IuIa, Levkovich IuI, Shumilova TE, Vershinina EA. Fiziol Zh SSSR Im I M Sechenova; 1989 Jun 01; 75(6):777-85. PubMed ID: 2806644 [Abstract] [Full Text] [Related]
19. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation. Hyakutake T, Tominaga S, Matsumoto T, Yanase S. J Biomech Eng; 2008 Feb 01; 130(1):011014. PubMed ID: 18298190 [Abstract] [Full Text] [Related]
20. [Establishment of a system for measuring blood flow velocity of rat microvessel using dark background fluorescent image analysis method]. Wu X, Chen H, Yan W, Zheng X. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct 01; 22(5):1063-6. PubMed ID: 16294755 [Abstract] [Full Text] [Related] Page: [Next] [New Search]