These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


247 related items for PubMed ID: 23869450

  • 1. Extent of sample loss on the sampling device and the resulting experimental biases when collecting volatile fatty acids (VFAs) in air using sorbent tubes.
    Kim YH, Kim KH.
    Anal Chem; 2013 Aug 20; 85(16):7818-25. PubMed ID: 23869450
    [Abstract] [Full Text] [Related]

  • 2. Performance test of a sorbent tube sampler with respect to analyte loss in collecting biogenic volatile organic compounds.
    Ullah MA, Kim KH.
    Anal Bioanal Chem; 2015 Jan 20; 407(2):415-26. PubMed ID: 25407426
    [Abstract] [Full Text] [Related]

  • 3. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs).
    Gallego E, Roca FJ, Perales JF, Guardino X.
    Talanta; 2010 May 15; 81(3):916-24. PubMed ID: 20298873
    [Abstract] [Full Text] [Related]

  • 4. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E.
    J Chromatogr A; 2010 Apr 16; 1217(16):2674-84. PubMed ID: 20106481
    [Abstract] [Full Text] [Related]

  • 5. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry.
    Brown VM, Crump DR, Plant NT, Pengelly I.
    J Chromatogr A; 2014 Jul 11; 1350():1-9. PubMed ID: 24877978
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello(®) diffusive sampler for the analysis of VOCs.
    Gallego E, Roca FJ, Perales JF, Guardino X.
    Talanta; 2011 Jul 15; 85(1):662-72. PubMed ID: 21645756
    [Abstract] [Full Text] [Related]

  • 8. Novel approach to test the relative recovery of liquid-phase standard in sorbent-tube analysis of gaseous volatile organic compounds.
    Kim YH, Kim KH.
    Anal Chem; 2012 May 01; 84(9):4126-39. PubMed ID: 22468653
    [Abstract] [Full Text] [Related]

  • 9. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.
    Woolfenden E.
    J Chromatogr A; 2010 Apr 16; 1217(16):2685-94. PubMed ID: 20106482
    [Abstract] [Full Text] [Related]

  • 10. Parallel analysis of volatile fatty acids, indole, skatole, phenol, and trimethylamine from waste-related source environments.
    Rahman MM, Kim KH.
    J Chromatogr A; 2013 Nov 01; 1314():241-8. PubMed ID: 24070624
    [Abstract] [Full Text] [Related]

  • 11. Recovery and reactivity of polycyclic aromatic hydrocarbons collected on selected sorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry.
    Wallace MAG, Pleil JD, Whitaker DA, Oliver KD.
    J Chromatogr A; 2019 Sep 27; 1602():19-29. PubMed ID: 31128883
    [Abstract] [Full Text] [Related]

  • 12. Sorptive process and breakthrough behavior of odorous volatile compounds on inert surfaces.
    Ahmed E, Szulejko JE, Adelodun AA, Bhattacharya SS, Jeon BH, Kumar S, Kim KH.
    Sci Rep; 2018 Sep 03; 8(1):13118. PubMed ID: 30177843
    [Abstract] [Full Text] [Related]

  • 13. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.
    Marcillo A, Jakimovska V, Widdig A, Birkemeyer C.
    J Chromatogr A; 2017 Sep 08; 1514():16-28. PubMed ID: 28765001
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation.
    Rodríguez-Navas C, Forteza R, Cerdà V.
    Chemosphere; 2012 Nov 08; 89(11):1426-36. PubMed ID: 22776256
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Passive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types.
    McAlary T, Groenevelt H, Disher S, Arnold J, Seethapathy S, Sacco P, Crump D, Schumacher B, Hayes H, Johnson P, Górecki T.
    Environ Sci Process Impacts; 2015 May 08; 17(5):896-905. PubMed ID: 25861049
    [Abstract] [Full Text] [Related]

  • 19. Simulation of the breakthrough behavior of volatile organic compounds against sorbent tube sampler as a function of concentration level and sampling volume.
    Kim KH, Lee MH, Szulejko JE.
    Anal Chim Acta; 2014 Jul 04; 835():46-55. PubMed ID: 24952628
    [Abstract] [Full Text] [Related]

  • 20. Multisorbent tubes for collecting volatile organic compounds in spacecraft air.
    Matney ML, Beck SW, Limero TF, James JT.
    AIHAJ; 2000 Jul 04; 61(1):69-75. PubMed ID: 10772617
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.