These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


95 related items for PubMed ID: 23870963

  • 1. Intracellular proteins of ethanol-treated yeast cells involved in iron sorption.
    Tsuji T, Konoeda Y, Kanai K, Yokoyama A, Yoshida S.
    Food Chem; 2013 Dec 01; 141(3):2314-20. PubMed ID: 23870963
    [Abstract] [Full Text] [Related]

  • 2. Novel method to reduce fishy aftertaste in wine and seafood pairing using alcohol-treated yeast cells.
    Tsuji T, Kanai K, Yokoyama A, Tamura T, Hanamure K, Sasaki K, Takata R, Yoshida S.
    J Agric Food Chem; 2012 Jun 20; 60(24):6197-203. PubMed ID: 22630330
    [Abstract] [Full Text] [Related]

  • 3. Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine.
    Pradelles R, Alexandre H, Ortiz-Julien A, Chassagne D.
    J Agric Food Chem; 2008 Dec 24; 56(24):11854-61. PubMed ID: 19053375
    [Abstract] [Full Text] [Related]

  • 4. Iron is an essential cause of fishy aftertaste formation in wine and seafood pairing.
    Tamura T, Taniguchi K, Suzuki Y, Okubo T, Takata R, Konno T.
    J Agric Food Chem; 2009 Sep 23; 57(18):8550-6. PubMed ID: 19708656
    [Abstract] [Full Text] [Related]

  • 5. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity.
    Echeverrigaray S, Scariot FJ, Menegotto M, Delamare APL.
    Int J Food Microbiol; 2020 Feb 02; 314():108383. PubMed ID: 31698283
    [Abstract] [Full Text] [Related]

  • 6. Ethanol and the fluidity of the yeast plasma membrane.
    Jones RP, Greenfield PF.
    Yeast; 1987 Dec 02; 3(4):223-32. PubMed ID: 3332975
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library.
    Anderson MJ, Barker SL, Boone C, Measday V.
    FEMS Yeast Res; 2012 Feb 02; 12(1):48-60. PubMed ID: 22093065
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Autophagy in wine making.
    Cebollero E, Rejas MT, González R.
    Methods Enzymol; 2008 Feb 02; 451():163-75. PubMed ID: 19185720
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Production technologies for reduced alcoholic wines.
    Schmidtke LM, Blackman JW, Agboola SO.
    J Food Sci; 2012 Jan 02; 77(1):R25-41. PubMed ID: 22260123
    [Abstract] [Full Text] [Related]

  • 18. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.
    Francois JM.
    Adv Exp Med Biol; 2016 Jan 02; 892():11-31. PubMed ID: 26721269
    [Abstract] [Full Text] [Related]

  • 19. A new methodology to obtain wine yeast strains overproducing mannoproteins.
    Quirós M, Gonzalez-Ramos D, Tabera L, Gonzalez R.
    Int J Food Microbiol; 2010 Apr 30; 139(1-2):9-14. PubMed ID: 20219260
    [Abstract] [Full Text] [Related]

  • 20. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.
    Ramirez-Córdova J, Drnevich J, Madrigal-Pulido JA, Arrizon J, Allen K, Martínez-Velázquez M, Alvarez-Maya I.
    Antonie Van Leeuwenhoek; 2012 Aug 30; 102(2):247-55. PubMed ID: 22535436
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.