These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


526 related items for PubMed ID: 23875751

  • 21. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.
    Kawasaki T, Tanaka H.
    J Phys Condens Matter; 2010 Jun 16; 22(23):232102. PubMed ID: 21393759
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Particle dynamics in concentrated colloidal suspensions.
    Rojas LF, Vavrin R, Urban C, Kohlbrecher J, Stradner A, Scheffold F, Schurtenberger P.
    Faraday Discuss; 2003 Jun 16; 123():385-400;discussion 401-21. PubMed ID: 12638872
    [Abstract] [Full Text] [Related]

  • 25. Dynamics of colloidal glasses and gels.
    Joshi YM.
    Annu Rev Chem Biomol Eng; 2014 Jun 16; 5():181-202. PubMed ID: 24655137
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.
    Hwang J, Kim J, Sung BJ.
    Phys Rev E; 2016 Aug 16; 94(2-1):022614. PubMed ID: 27627367
    [Abstract] [Full Text] [Related]

  • 32. High-order mode-coupling theory for the colloidal glass transition.
    Wu J, Cao J.
    Phys Rev Lett; 2005 Aug 12; 95(7):078301. PubMed ID: 16196831
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Soft colloids make strong glasses.
    Mattsson J, Wyss HM, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman DR, Weitz DA.
    Nature; 2009 Nov 05; 462(7269):83-6. PubMed ID: 19890327
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Dynamics in dense suspensions of charge-stabilized colloidal particles.
    Robert A, Wagner J, Härtl W, Autenrieth T, Grübel G.
    Eur Phys J E Soft Matter; 2008 Jan 05; 25(1):77-81. PubMed ID: 18265932
    [Abstract] [Full Text] [Related]

  • 37. Theory of activated dynamics and glass transition of hard colloids in two dimensions.
    Zhang BK, Li HS, Tian WD, Chen K, Ma YQ.
    J Chem Phys; 2014 Mar 07; 140(9):094506. PubMed ID: 24606367
    [Abstract] [Full Text] [Related]

  • 38. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass.
    Hima Nagamanasa K, Gokhale S, Sood AK, Ganapathy R.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun 07; 89(6):062308. PubMed ID: 25019777
    [Abstract] [Full Text] [Related]

  • 39. Linear and nonlinear viscoelasticity of concentrated thermoresponsive microgel suspensions.
    Chaudhary G, Ghosh A, Kang JG, Braun PV, Ewoldt RH, Schweizer KS.
    J Colloid Interface Sci; 2021 Nov 07; 601():886-898. PubMed ID: 34186277
    [Abstract] [Full Text] [Related]

  • 40. Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
    Martoïa F, Dumont PJ, Orgéas L, Belgacem MN, Putaux JL.
    Soft Matter; 2016 Feb 14; 12(6):1721-35. PubMed ID: 26725654
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.