These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


616 related items for PubMed ID: 23877993

  • 1. Expression dynamics of pluripotency genes in chicken primordial germ cells before and after colonization of the genital ridges.
    Naeemipour M, Dehghani H, Bassami M, Bahrami A.
    Mol Reprod Dev; 2013 Oct; 80(10):849-61. PubMed ID: 23877993
    [Abstract] [Full Text] [Related]

  • 2. Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines.
    Western P, Maldonado-Saldivia J, van den Bergen J, Hajkova P, Saitou M, Barton S, Surani MA.
    Stem Cells; 2005 Oct; 23(10):1436-42. PubMed ID: 16166252
    [Abstract] [Full Text] [Related]

  • 3. Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells.
    Yu M, Lian S, Han H, Yu K, Li G, Lian Z, Li N.
    Sci China Life Sci; 2013 Jan; 56(1):40-50. PubMed ID: 23314866
    [Abstract] [Full Text] [Related]

  • 4. Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation.
    Aeckerle N, Drummer C, Debowski K, Viebahn C, Behr R.
    Mol Hum Reprod; 2015 Jan; 21(1):66-80. PubMed ID: 25237007
    [Abstract] [Full Text] [Related]

  • 5. Nanog expression in mouse germ cell development.
    Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T.
    Gene Expr Patterns; 2005 Jun; 5(5):639-46. PubMed ID: 15939376
    [Abstract] [Full Text] [Related]

  • 6. In vitro generation and characterization of chicken long-term germ cells from different embryonic origins.
    Raucci F, Fuet A, Pain B.
    Theriogenology; 2015 Sep 15; 84(5):732-42.e1-2. PubMed ID: 26037665
    [Abstract] [Full Text] [Related]

  • 7. Differential expression of the embryo/cancer gene ECSA(DPPA2), the cancer/testis gene BORIS and the pluripotency structural gene OCT4, in human preimplantation development.
    Monk M, Hitchins M, Hawes S.
    Mol Hum Reprod; 2008 Jun 15; 14(6):347-55. PubMed ID: 18467432
    [Abstract] [Full Text] [Related]

  • 8. Conserved expression pattern of chicken DAZL in primordial germ cells and germ-line cells.
    Rengaraj D, Zheng YH, Kang KS, Park KJ, Lee BR, Lee SI, Choi JW, Han JY.
    Theriogenology; 2010 Sep 15; 74(5):765-76. PubMed ID: 20537692
    [Abstract] [Full Text] [Related]

  • 9. Chicken embryonic stem cells as a non-mammalian embryonic stem cell model.
    Lavial F, Pain B.
    Dev Growth Differ; 2010 Jan 15; 52(1):101-14. PubMed ID: 20039925
    [Abstract] [Full Text] [Related]

  • 10. Nanog regulates primordial germ cell migration through Cxcr4b.
    Sánchez-Sánchez AV, Camp E, Leal-Tassias A, Atkinson SP, Armstrong L, Díaz-Llopis M, Mullor JL.
    Stem Cells; 2010 Sep 15; 28(9):1457-64. PubMed ID: 20578184
    [Abstract] [Full Text] [Related]

  • 11. Pluripotent genes in avian stem cells.
    Jean C, Aubel P, Soleihavoup C, Bouhallier F, Voisin S, Lavial F, Pain B.
    Dev Growth Differ; 2013 Jan 15; 55(1):41-51. PubMed ID: 23278808
    [Abstract] [Full Text] [Related]

  • 12. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells.
    Lavial F, Acloque H, Bertocchini F, Macleod DJ, Boast S, Bachelard E, Montillet G, Thenot S, Sang HM, Stern CD, Samarut J, Pain B.
    Development; 2007 Oct 15; 134(19):3549-63. PubMed ID: 17827181
    [Abstract] [Full Text] [Related]

  • 13. BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells.
    Shirazi R, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Ragerdi Kashani I.
    Cell Biol Int; 2012 Oct 15; 36(12):1185-93. PubMed ID: 22988836
    [Abstract] [Full Text] [Related]

  • 14. Identification of developmental pluripotency associated 5 expression in human pluripotent stem cells.
    Kim SK, Suh MR, Yoon HS, Lee JB, Oh SK, Moon SY, Moon SH, Lee JY, Hwang JH, Cho WJ, Kim KS.
    Stem Cells; 2005 Apr 15; 23(4):458-62. PubMed ID: 15790765
    [Abstract] [Full Text] [Related]

  • 15. Male fetal germ cell differentiation involves complex repression of the regulatory network controlling pluripotency.
    Western PS, van den Bergen JA, Miles DC, Sinclair AH.
    FASEB J; 2010 Aug 15; 24(8):3026-35. PubMed ID: 20395456
    [Abstract] [Full Text] [Related]

  • 16. Overexpression Nanog activates pluripotent genes in porcine fetal fibroblasts and nuclear transfer embryos.
    Zhang L, Luo YB, Bou G, Kong QR, Huan YJ, Zhu J, Wang JY, Li H, Wang F, Shi YQ, Wei YC, Liu ZH.
    Anat Rec (Hoboken); 2011 Nov 15; 294(11):1809-17. PubMed ID: 21972213
    [Abstract] [Full Text] [Related]

  • 17. Oct4 dependent chromatin activation is required for chicken primordial germ cell migration.
    Meng L, Wang S, Jiang H, Hua Y, Yin B, Huang X, Man Q, Wang H, Zhu G.
    Stem Cell Rev Rep; 2022 Oct 15; 18(7):2535-2546. PubMed ID: 35397052
    [Abstract] [Full Text] [Related]

  • 18. Foetal germ cells: striking the balance between pluripotency and differentiation.
    Western P.
    Int J Dev Biol; 2009 Oct 15; 53(2-3):393-409. PubMed ID: 19412894
    [Abstract] [Full Text] [Related]

  • 19. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling.
    Yabuta Y, Kurimoto K, Ohinata Y, Seki Y, Saitou M.
    Biol Reprod; 2006 Nov 15; 75(5):705-16. PubMed ID: 16870942
    [Abstract] [Full Text] [Related]

  • 20. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells.
    Gao Y, Jammes H, Rasmussen MA, Oestrup O, Beaujean N, Hall V, Hyttel P.
    Epigenetics; 2011 Sep 01; 6(9):1149-61. PubMed ID: 21975513
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.