These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 23879733

  • 1. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion.
    Mason B, Lenton J, Leicht C, Goosey-Tolfrey V.
    J Sports Sci; 2014; 32(1):78-91. PubMed ID: 23879733
    [Abstract] [Full Text] [Related]

  • 2. A computerized wheelchair ergometer. Results of a comparison study.
    Veeger HE, van der Woude LH, Rozendal RH.
    Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258
    [Abstract] [Full Text] [Related]

  • 3. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C, Grangeon M, Ananos L, Brosseau R, Gagnon DH.
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [Abstract] [Full Text] [Related]

  • 4. Differentiated perceived exertion and self-regulated wheelchair exercise.
    Paulson TA, Bishop NC, Eston RG, Goosey-Tolfrey VL.
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415
    [Abstract] [Full Text] [Related]

  • 5. Influence of wheel configuration on wheelchair basketball performance: wheel stiffness, tyre type and tyre orientation.
    Mason BS, Lemstra M, van der Woude LH, Vegter R, Goosey-Tolfrey VL.
    Med Eng Phys; 2015 Apr; 37(4):392-9. PubMed ID: 25726151
    [Abstract] [Full Text] [Related]

  • 6. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions.
    de Klerk R, Velhorst V, Veeger DHEJ, van der Woude LHV, Vegter RJK.
    J Neuroeng Rehabil; 2020 Oct 17; 17(1):136. PubMed ID: 33069257
    [Abstract] [Full Text] [Related]

  • 7. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP, van der Woude L, Fowler N, Nicholson G, Tolfrey K, Goosey-Tolfrey V.
    Int J Sports Med; 2014 Mar 17; 35(3):223-31. PubMed ID: 23945971
    [Abstract] [Full Text] [Related]

  • 8. The effects of experience on the energy cost of wheelchair propulsion.
    Croft L, Lenton J, Tolfrey K, Goosey-Tolfrey V.
    Eur J Phys Rehabil Med; 2013 Dec 17; 49(6):865-73. PubMed ID: 23558701
    [Abstract] [Full Text] [Related]

  • 9. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP, Fowler N, van der Woude L, Goosey-Tolfrey VL.
    Int J Sports Med; 2008 May 17; 29(5):384-9. PubMed ID: 17879885
    [Abstract] [Full Text] [Related]

  • 10. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M, Lawrie AT, Hunter J, Warren PM.
    Scand J Rehabil Med; 1990 May 17; 22(3):139-43. PubMed ID: 2244191
    [Abstract] [Full Text] [Related]

  • 11. The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion.
    Mason BS, Lenton JP, Goosey-Tolfrey VL.
    J Spinal Cord Med; 2015 Jul 17; 38(4):476-84. PubMed ID: 24593797
    [Abstract] [Full Text] [Related]

  • 12. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.
    de Groot S, Vegter RJ, van der Woude LH.
    Med Eng Phys; 2013 Oct 17; 35(10):1476-82. PubMed ID: 23642660
    [Abstract] [Full Text] [Related]

  • 13. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F, Tordi N.
    Clin Biomech (Bristol); 2004 May 17; 19(4):343-9. PubMed ID: 15109753
    [Abstract] [Full Text] [Related]

  • 14. Maximal physiological responses during arm cranking and treadmill wheelchair propulsion in T4-T6 paraplegic men.
    Gass EM, Harvey LA, Gass GC.
    Paraplegia; 1995 May 17; 33(5):267-70. PubMed ID: 7630652
    [Abstract] [Full Text] [Related]

  • 15. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S, de Bruin M, Noomen SP, van der Woude LH.
    Clin Biomech (Bristol); 2008 May 17; 23(4):434-41. PubMed ID: 18077065
    [Abstract] [Full Text] [Related]

  • 16. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS, Van Der Woude LH, Tolfrey K, Lenton JP, Goosey-Tolfrey VL.
    Med Sci Sports Exerc; 2012 Jan 17; 44(1):126-34. PubMed ID: 21701409
    [Abstract] [Full Text] [Related]

  • 17. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults.
    Chaikhot D, Taylor MJD, Hettinga FJ.
    Eur J Sport Sci; 2018 Jun 17; 18(5):650-658. PubMed ID: 29533156
    [Abstract] [Full Text] [Related]

  • 18. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HE, Gwinn T.
    Am J Phys Med Rehabil; 1998 Jun 17; 77(3):222-34. PubMed ID: 9635557
    [Abstract] [Full Text] [Related]

  • 19. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S, Veeger HE, Hollander AP, van der Woude LH.
    Med Eng Phys; 2005 Jan 17; 27(1):41-9. PubMed ID: 15604003
    [Abstract] [Full Text] [Related]

  • 20. Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency.
    Lenton JP, van der Woude L, Fowler N, Goosey-Tolfrey V.
    Int J Sports Med; 2009 Apr 17; 30(4):233-9. PubMed ID: 19199211
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.