These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Du J, Bai W, Song H, Yuan YJ. Metab Eng; 2013 Sep; 19():50-6. PubMed ID: 23747604 [Abstract] [Full Text] [Related]
27. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium. Chen S, Jia N, Ding MZ, Yuan YJ. J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1507-1516. PubMed ID: 27565673 [Abstract] [Full Text] [Related]
28. Siderophores of Bacillus pumilus promote 2-keto-L-gulonic acid production in a vitamin C microbial fermentation system. Zhang Q, Lin Y, Shen G, Zhang H, Lyu S. J Basic Microbiol; 2022 Jul; 62(7):833-842. PubMed ID: 35644014 [Abstract] [Full Text] [Related]
29. Enhanced 2-keto-L-gulonic acid production by applying L-sorbose-tolerant helper strain in the co-culture system. Mandlaa, Sun Z, Wang R, Han X, Xu H, Yang W. AMB Express; 2018 Feb 28; 8(1):30. PubMed ID: 29492704 [Abstract] [Full Text] [Related]
31. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Wang P, Zeng W, Du G, Zhou J, Chen J. J Biotechnol; 2019 Aug 10; 301():24-34. PubMed ID: 31136757 [Abstract] [Full Text] [Related]
32. Microbial Interactions in a Vitamin C Industrial Fermentation System: Novel Insights and Perspectives. Zhang Q, Lyu S. Appl Environ Microbiol; 2022 Sep 22; 88(18):e0121222. PubMed ID: 36073939 [Abstract] [Full Text] [Related]
33. [Fitness analysis between the L-sorbosone dehydrogenase modules and Ketogulonigenium vulgare chassis]. Chen S, Jia N, Ding M, Yuan Y. Sheng Wu Gong Cheng Xue Bao; 2016 Sep 25; 32(9):1224-1232. PubMed ID: 29022323 [Abstract] [Full Text] [Related]
34. Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model. Zou W, Zhou M, Liu L, Chen J. J Biotechnol; 2013 Apr 15; 164(4):503-9. PubMed ID: 23454894 [Abstract] [Full Text] [Related]
36. Genome Sequence of Bacillus endophyticus and Analysis of Its Companion Mechanism in the Ketogulonigenium vulgare-Bacillus Strain Consortium. Jia N, Du J, Ding MZ, Gao F, Yuan YJ. PLoS One; 2015 Apr 15; 10(8):e0135104. PubMed ID: 26248285 [Abstract] [Full Text] [Related]
37. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam. Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z. J Appl Microbiol; 2004 Apr 15; 96(6):1317-23. PubMed ID: 15139924 [Abstract] [Full Text] [Related]
38. 2-Keto-L-gulonic acid inhibits the growth of Bacillus pumilus and Ketogulonicigenium vulgare. Zhang Q, Lyu S. World J Microbiol Biotechnol; 2023 Jul 21; 39(10):257. PubMed ID: 37474882 [Abstract] [Full Text] [Related]
39. Antioxidant effect of glutathione on promoting 2-keto-l-gulonic acid production in vitamin C fermentation system. Huang M, Zhang YH, Yao S, Ma D, Yu XD, Zhang Q, Lyu SX. J Appl Microbiol; 2018 Nov 21; 125(5):1383-1395. PubMed ID: 30053331 [Abstract] [Full Text] [Related]